Brain structure & function
-
The ventral striatum (VS) is of particular interest in the study of neuropsychiatric disorders. In this study, performed on non-human primates, we associated local perturbation with monosynaptic axonal tracer injection into medial, central and lateral VS to characterize anatomo-functional circuits underlying the respective expression of sexual manifestations, stereotyped behaviors and hypoactive state associated with loss of food motivation. For the three behavioral effects, we demonstrated the existence of three distinct cortico-basal ganglia (BG) circuits that were topographically organized and overlapping at some cortical (orbitofrontal cortex, anterior cingulate cortex) and subcortical (caudal levels of BG) levels, suggesting interactions between motivation domains. ⋯ For the three behavioral effects, the cortico-BG circuits mainly involved limbic regions of the external and internal pallidum, as well as the limbic part of the substantia nigra pars reticulata (SNr), suggesting the involvement of both direct and indirect striatal pathways and both output BG structures. As these motivation disorders could still be induced in dopamine (DA)-depleted monkeys, we suggest that DA issued from the substantia nigra pars compacta (SNc) modulates their expression rather than causes them. Finally, this study may give some insights into the structure to target to achieve therapeutic benefits from deep brain stimulation in motivation disorders.
-
In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. ⋯ In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.
-
We traced the connections of the macaque Granular Frontal Opercular (GrFO) area, located in the rostralmost part of the frontal opercular margin, and compared them with those of the caudally adjacent dorsal opercular (DO) and precentral opercular (PrCO) areas. Area GrFO displays strong connections with areas DO, PrCO, and ventrolateral prefrontal (VLPF) area 12l, and even more with the mostly hand-related ventral premotor (PMv) area F5a. Other connections involve the mostly face/mouth-related PMv area F5c, the arm-related area F6/pre-SMA, the hand-related fields of VLPF areas 46v and 12r, and area SII, mostly the hand representation. ⋯ This connectivity pattern clearly distinguishes area GrFO from areas DO and PrCO, characterized by a connectivity mostly involving oral sensorimotor and gustatory areas/subcortical structures. The present data suggest, based on connectivity patterns, an involvement of area GrFO in the cortical circuits for controlling goal-directed hand and face/mouth actions. In this context, area GrFO could represent a gateway for the access of limbic inputs, for example about subjective values, emotional significance of stimuli or internal states, to the PMv areas involved in selecting appropriate goal-directed hand and mouth/face actions.
-
In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats. In this study, we analyze on the basis of the Golgi-Cox method the morphology of neurons in the IC, the medial geniculate body (MGB) and the auditory cortex (AC) of 3-month-old Long-Evans rats exposed to identical noise at postnatal day 14 and compare the results to littermate controls. In rats exposed to noise as pups, the mean total length of the neuronal tree was found to be larger in the external cortex and the central nucleus of the IC and in the ventral division of the MGB. ⋯ In the AC, the mean total length of the apical dendritic segments of pyramidal neurons was significantly shorter in noise-exposed rats, however, only slight differences with respect to controls were observed in the length of basal dendrites of pyramidal cells as well as in the neuronal trees of AC non-pyramidal neurons. The numerical density of dendritic spines on the branches of pyramidal AC neurons was lower in exposed rats than in controls. These findings demonstrate that early postnatal short noise exposure can induce permanent changes in the development of neurons in the central auditory system, which apparently represent morphological correlates of functional plasticity.
-
Deep brain stimulation (DBS) is effective in managing motor symptoms of Parkinson's disease in well-selected individuals. Recently, research has shown that DBS in the basal ganglia (BG) can alter neural circuits beyond the traditional basal ganglia-thalamus-cortical (BG-TH-CX) loop. For instance, functional imaging showed alterations in cerebellar activity with DBS in the subthalamic nucleus (STN). ⋯ Then, we applied STN-DBS at sub-therapeutic current along with stimulation of the deep cerebellar nuclei and found similar improvement in forelimb akinesia as with therapeutic STN-DBS alone. This suggests that STN-DBS can engage cerebellar activity to improve parkinsonian motor symptoms. Our study is the first to describe how STN-DBS in Parkinson's disease alters cerebellar activity using electrophysiology in vivo and reveal a potential for stimulating the cerebellum to potentiate deep brain stimulation of the subthalamic nucleus.