Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
An increase in oxidative stress and overproduction of oxidizing reactive species plays an important role in the pathophysiology of several conditions encountered in the neurocritical care setting including: ischemic and hemorrhagic strokes, traumatic brain injury, acute respiratory distress syndrome, sepsis, and organ failure. The presence of oxidative stress in these conditions is supported by a large body of pre-clinical and clinical studies, and provides a rationale to support a potential therapeutic role for antioxidants. The purpose of this article is to briefly review the basic mechanisms and molecular biology of oxidative stress, summarize its role in critically ill neurological patients, and review available data regarding the potential role of antioxidant strategies in neurocritical care and future directions.
-
Therapeutic hypothermia (TH) is the intentional reduction of core body temperature to 32°C to 35°C, and is increasingly applied by intensivists for a variety of acute neurological injuries to achieve neuroprotection and reduction of elevated intracranial pressure. TH improves outcomes in comatose patients after a cardiac arrest with a shockable rhythm, but other off-label applications exist and are likely to increase in the future. This comprehensive review summarizes the physiology and cellular mechanism of action of TH, as well as different means of TH induction and maintenance with potential side effects. Indications of TH are critically reviewed by disease entity, as reported in the most recent literature, and evidence-based recommendations are provided.
-
The gold standard for assessing neurological function is the bedside clinical examination. However, in neurocritical patients, the signs and symptoms related to the severity of illness can often be ambiguous. It can be hard to distinguish between a severe but stable disease state and one that is dynamic and in a critical decline. ⋯ Used in the right setting, biomarkers in neurocritical care can also aid with decisions to intensify treatment or avoid prolonged and unnecessary therapy. The term biomarker is used in various ways, and here we use it to refer to 3 general types: 1) circulating blood macromolecules, 2) brain imaging, and 3) continuous invasive monitors. Despite its promise, biomarkers have several limitations and should be interpreted in the context of the overall clinical assessment.
-
Intracerebral hemorrhage is a devastating disease, and no specific therapy has been proven to reduce mortality in a randomized controlled trial. However, management in a neuroscience intensive care unit does appear to improve outcomes, suggesting that many available therapies do in fact provide benefit. In the acute phase of intracerebral hemorrhage care, strategies aimed at minimizing ongoing bleeding include reversal of anticoagulation and modest blood pressure reduction. ⋯ Selected patients may benefit from hematoma evacuation or external ventricular drainage. Ongoing clinical trials are examining aggressive blood pressure management, hemostatic therapy, platelet transfusion, stereotactic hematoma evacuation, and intraventricular thrombolysis. Finally, preventing recurrence of intracerebral hemorrhage is of pivotal importance, and tight blood pressure management is paramount.
-
Cerebral vasospasm occurs frequently after aneurysmal subarachnoid and contributes to delayed cerebral ischemia. In this article we address systematic problems with the literature on vasospasm and then review both established and experimental treatment options.