Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. ⋯ In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.
-
Protein misfolding and aggregation in the brain have been recognized to be crucial in the pathogenesis of various neurodegenerative diseases, including Alzheimer's, Parkinson's, and the polyglutamine (polyQ) diseases, which are collectively called the "protein misfolding diseases". In the polyQ diseases, an abnormally expanded polyQ stretch in the responsible proteins causes the proteins to misfold and aggregate, eventually resulting in neurodegeneration. Hypothesizing that polyQ protein misfolding and aggregation could be inhibited by molecules specifically binding to the expanded polyQ stretch, we identified polyQ binding peptide 1 (QBP1). ⋯ We also introduce our attempts to deliver QBP1 into the brain by administration using viral vectors and protein transduction domains. Interestingly, recent data suggest that QBP1 can also inhibit the misfolding/aggregation of proteins responsible for other protein misfolding diseases, highlighting the potential of QBP1 as a general therapeutic molecule for a wide range of neurodegenerative diseases. We hope that in the near future, aggregation inhibitor-based drugs will be developed and bring relief to patients suffering from these currently intractable protein misfolding diseases.
-
Review Historical Article
Molecular genetic testing for mitochondrial disease: from one generation to the next.
Molecular genetic diagnostic testing for mitochondrial disease has evolved continually since the first genetic basis for a clinical mitochondrial disease syndrome was identified in the late 1980s. Owing to global limitations in both knowledge and technology, few individuals, even among those with strong clinical or biochemical evidence of mitochondrial respiratory chain dysfunction, ever received a definitive molecular diagnosis prior to 2005. Clinically available genetic diagnostic testing options improved by 2006 to include sequencing and deletion analysis of an increasing number of individual nuclear genes linked to mitochondrial disease, genome-wide microarray analysis for chromosomal copy number abnormalities, and mitochondrial DNA whole genome sequence analysis. ⋯ Among 152 patients aged 6 weeks to 81 years referred for clinical evaluation of multisystem presentations concerning for suspected mitochondrial disease, a genetic etiology was established that confirmed definite mitochondrial disease in 16.4% and excluded primary mitochondrial disease in 9.2%. Substantial diagnostic challenges remain owing to the clinical difficulty and frank low yield of a priori selecting individual nuclear genes to sequence based on particular symptomatic or biochemical manifestations of suspected mitochondrial disease. These findings highlight the particular utility of massively parallel nuclear exome sequencing technologies, whose benefits and limitations are explored relative to the clinical genetic diagnostic evaluation of mitochondrial disease.
-
Ventral spinal root avulsion causes complete denervation of muscles in the limb and also progressive death of segmental motoneurons (MN) leading to permanent paralysis. The chances for functional recovery after ventral root avulsion are very poor owing to the loss of avulsed neurons and the long distance that surviving neurons have to re-grow axons from the spinal cord to the corresponding targets. Following unilateral avulsion of L4, L5 and L6 spinal roots in adult rats, we performed an intraspinal transplant of mesenchymal stem cells (MSC) and surgical re-implantation of the avulsed roots. ⋯ Electromyographic tests showed evidence of functional re-innervation of anterior tibialis and gastrocnemius muscles by the regenerated motor axons only in rats with the combined treatment. These results indicate that MSC are helpful in enhancing neuronal survival and increased the regenerative growth of injured axons. Surgical re-implantation and MSC grafting combined had a synergic neuroprotective effect on MN and on axonal regeneration and muscle re-innervation after spinal root avulsion.