PLoS neglected tropical diseases
-
Mycetoma is caused by the subcutaneous inoculation of filamentous fungi or aerobic filamentous bacteria that form grains in the tissue. The purpose of this study is to describe the epidemiologic, clinic, laboratory, and therapeutic characteristics of patients with mycetoma at the Oswaldo Cruz Foundation in Rio de Janeiro, Brazil, between 1991 and 2014. Twenty-one cases of mycetoma were included in the study. ⋯ Clinical cure occurred in 11 cases (7 for eumycetoma and 4 for actinomycetoma), and recurrence was documented in 4 of 21 cases. No deaths were recorded during the study. Despite of the scarcity of mycetoma in our institution the cases presented reflect the wide clinical spectrum and difficulties to take care of this neglected disease.
-
Snakebite envenoming is a major public health burden in tropical parts of the developing world. In sub-Saharan Africa, neglect has led to a scarcity of antivenoms threatening the lives and limbs of snakebite victims. Technological advances within antivenom are warranted, but should be evaluated not only on their possible therapeutic impact, but also on their cost-competitiveness. ⋯ Based on industry data, the cost of treatment for a snakebite envenoming with a recombinant antivenom is estimated to be in the range USD 60-250 for the Final Drug Product. One of the effective antivenoms (SAIMR Snake Polyvalent Antivenom from the South African Vaccine Producers) currently on the market has been reported to have a wholesale price of USD 640 per treatment for an average snakebite. Recombinant antivenoms may therefore in the future be a cost-competitive alternative to existing serum-based antivenoms.
-
Scrub typhus is a rickettsiosis which is caused by Orientia tsutsugamushi and occurs throughout the Asia-Pacific region. Molecular diagnosis of rickettsioses using eschar swabs has recently emerged, and may be very useful for the diagnosis of these diseases in tropical settings. ⋯ These results suggest that polyclonal antigen pools used for serological testing in the future should contain at least Karp, Kawasaki, Gilliam and TA716 antigens for Vietnamese patients, as well as patients who have traveled to Vietnam. qPCR after eschar swabbing should be considered for molecular diagnosis of scrub typhus in endemic patients as well as in travelers, since it is easy to perform and appears very useful for the rapid detection of Orientia tsutsugamushi in the early phase of infection.
-
Comparative Study
Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms.
Transmission of Yersinia pestis by flea bite can occur by two mechanisms. After taking a blood meal from a bacteremic mammal, fleas have the potential to transmit the very next time they feed. This early-phase transmission resembles mechanical transmission in some respects, but the mechanism is unknown. Thereafter, transmission occurs after Yersinia pestis forms a biofilm in the proventricular valve in the flea foregut. The biofilm can impede and sometimes completely block the ingestion of blood, resulting in regurgitative transmission of bacteria into the bite site. In this study, we compared the relative efficiency of the two modes of transmission for Xenopsylla cheopis, a flea known to become completely blocked at a high rate, and Oropsylla montana, a flea that has been considered to rarely develop proventricular blockage. ⋯ A model system incorporating standardized experimental conditions and viability controls was developed to more reliably compare the infection, proventricular blockage and transmission dynamics of different flea vectors, and was used to resolve a long-standing uncertainty concerning the vector competence of O. montana. Both X. cheopis and O. montana are fully capable of transmitting Y. pestis by the proventricular biofilm-dependent mechanism.
-
Two goals have been set for Gambian human African trypanosomiasis (HAT), the first is to achieve elimination as a public health problem in 90% of foci by 2020, and the second is to achieve zero transmission globally by 2030. It remains unclear if certain HAT hotspots could achieve elimination as a public health problem by 2020 and, of greater concern, it appears that current interventions to control HAT in these areas may not be sufficient to achieve zero transmission by 2030. A mathematical model of disease dynamics was used to assess the potential impact of changing the intervention strategy in two high-endemicity health zones of Kwilu province, Democratic Republic of Congo. ⋯ All vector control strategies simulated reduced transmission enough to meet the 2030 goal, even if vector control was only moderately effective (60% tsetse population reduction). At this level of control the full elimination threshold was expected to be met within six years following the start of the change in strategy and over 6000 additional cases would be averted between 2017 and 2030 compared to current screening alone. It is recommended that a two-pronged strategy including both enhanced active screening and tsetse control is implemented in this region and in other persistent HAT foci to ensure the success of the control programme and meet the 2030 elimination goal for HAT.