The anatomical record : advances in integrative anatomy and evolutionary biology
-
To investigate matrix metalloproteinase-9 (MMP-9) mRNA and vascular endothelial growth factor (VEGF) protein expression in gastric carcinoma and its correlation with microvascular density, growth-pattern, invasion, metastasis, and prognosis. In situ hybridization of MMP-9 mRNA and immunohistochemistry of VEGF and CD34 proteins were performed on surgical specimens of gastric cancers from 118 patients compared with 20 nonmalignant gastric mucosae. Their relationships to pathological parameters and survival times were determined by statistical analysis. ⋯ Patients with higher MMP-9 mRNA and VEGF expression demonstrated vivid tumor angiogenesis and poor 5-year survival rate. MMP-9 and VEGF expression is associated with enhanced tumor angiogenesis and may play crucial roles in the invasion and metastasis of gastric carcinoma. Therefore, MMP-9 and VEGF may represent prognostic biomarkers and promising targets for therapeutic intervention.
-
Comparative Study
The effect of sevoflurane inhalation on gabaergic neurons activation: observation on the GAD67-GFP knock-in mouse.
The mechanisms underlying volatile anesthesia agents are not well elucidated. Emerging researches have focused on the participation of γ-aminobutyric acid (GABA) neurons but there still lacks morphological evidence. To elucidate the possible activation of GABAergic neurons by sevoflurane inhalation in morphology, Fos (as neuronal activity marker) and GABA neurons double labeling were observed on the brain of glutamic acid decarboxylase (GAD) 67-GFP knock-in mice after sevoflurane inhalation. ⋯ In CA1, DG, DM, cg1, cg2, and PAG, Fos was expressed as well, but only few were present in GABAergic neurons. Fos expression was very high in thalamus, but no coexistence were found as no GABAergic neuron was detected in this area. Our results provided morphological evidence that GABAergic transmission in specific brain areas may participate in the sevoflurane-induced anesthesia.
-
It is known that selective sacral roots rhizotomy is effective for relieving the neurogenic bladder associated with spinal cord injury. The goal of this study is to review the surgical anatomy of the lumbosacral nerve rootlets and to provide some morphological bases for highly selective sacral roots rhizotomy. Spinal cord dissections were performed on five cadavers under surgical microscope. ⋯ Each subbundle further gave out two to three rootlets connected with the spinal cord; (2) there were no significant differences in the number of rootlets within the L1 to S2 segments, but the size of rootlets and the length of nerve roots varied (P < 0.05); and (3) the more myelinated fibers a rootlet contained, the larger transection area it had. The area of peripheral nervous system myelin positive cells and the total area of rootlets were correlated (P < 0.001). Thus, during highly selective sacral roots rhizotomy, the ventral and dorsal roots can be divided into several bundles of rootlets, and we could initially distinct the rootlets by their diameters.
-
In this morphological study, we report on the three-dimensional microvascular architecture constituting the toes of a patient affected by diabetic microangiopathy. We applied corrosion casting (CC) technique to the toes of a patient affected by Type 2 diabetes, who underwent surgery for explantation of inferior left limb due to necrotic processes of soft tissues. The toes of a foot traumatically explanted in a motorcycle accident were kept as controls. ⋯ This preliminary report represents only the first step for further investigations regarding morphological three-dimensional appearance of diabetic microangiopathy. CC and scanning electron microscopy technique well documented these morphological modifications, highlighting on both structural and ultrastructural features of diabetic toes microvessels. In conclusion, our qualitative data try to better focus on the pathophysiological mechanisms involved in diabetic dermopathy and microangiopathy, proposing CC as useful method to investigate on them.
-
Alcohol consumption interferes with gastrointestinal transit causing symptoms in alcoholic patients. Nitric oxide (NO), synthesized by neuronal nitric oxide synthase (nNOS) plays an important role in the control of gastrointestinal motility. Our aim was to investigate whether chronic alcohol intake in a murine model induces gastrointestinal motility disturbances and affects the nitrergic myenteric neurons in the stomach and jejunum. ⋯ The proportion of nNOS-immunoreactive neurons did not change in the stomach, whereas in the jejunum the percentage decreased from 33% to 27% (P < 0.001) after chronic alcohol intake. The total number of myenteric neurons remained unchanged. These results suggest that chronic alcohol consumption disturbs gastric and small intestinal motility in vivo and in vitro and is associated with a decrease in the proportion of nNOS-immunoreactive myenteric neurons in the murine jejunum.