Brain imaging and behavior
-
Brain Imaging Behav · Aug 2019
Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data.
Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. ⋯ We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.
-
Brain Imaging Behav · Jun 2019
Reduced cortical folding in multi-modal vestibular regions in persistent postural perceptual dizziness.
Persistent postural perceptual dizziness (PPPD) is a common functional vestibular disorder that is triggered and sustained by a complex interaction between physiological and psychological factors affecting spatial orientation and postural control. Past functional neuroimaging research and one recent structural (i.e., voxel-based morphometry-VBM) study have identified alterations in vestibular, visuo-spatial, and limbic brain regions in patients with PPPD and anxiety-prone normal individuals. However, no-one thus far has employed surface based morphometry (SBM) to explore whether cortical morphology in patients with PPPD differs from that of healthy people. ⋯ Relative to controls, PPPD patients showed significantly decreased local gyrification index (LGI) in multi-modal vestibular regions bilaterally, specifically the posterior insular cortices, supra-marginal gyri, and posterior superior temporal gyri (p < 0.001). Within the PPPD group, dizziness severity positively correlated with LGI in visual areas and negatively with LGI in the right superior parietal cortex. These findings demonstrate abnormal cortical folding in vestibular cortices and correlations between dizziness severity and cortical folding in visual and somatosensory spatial association areas in PPPD patients, which provides new insights into the pathophysiological mechanisms underlying this disorder.
-
Brain Imaging Behav · Jun 2019
Arterial spin labeling reveals relationships between resting cerebral perfusion and motor learning in Parkinson's disease.
Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. ⋯ In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.
-
Brain Imaging Behav · Jun 2019
Cerebral blood flow and heart rate variability predict fatigue severity in patients with chronic fatigue syndrome.
Prolonged, disabling fatigue is the hallmark of chronic fatigue syndrome (CFS). Previous neuroimaging studies have provided evidence for nervous system involvement in CFS etiology, including perturbations in brain structure/function. In this arterial spin labeling (ASL) MRI study, we examined variability in cerebral blood flow (CBFV) and heart rate (HRV) in 28 women: 14 with CFS and 14 healthy controls. ⋯ We also found novel evidence of bidirectional association between the very high frequency (VHF) band of HRV and CBFV. Taken together, the results of this study suggest that CBFV and HRV are potentially important measures of adaptive capacity in chronic illnesses like CFS. Future studies should address these measures as potential therapeutic targets to improve outcomes and reduce symptom severity in individuals with CFS.
-
Brain Imaging Behav · Jun 2019
Dependence on subconcussive impacts of brain metabolism in collision sport athletes: an MR spectroscopic study.
Long term neurological impairments due to repetitive head trauma are a growing concern for collision sport athletes. American Football has the highest rate of reported concussions among male high school athletes, a position held by soccer for female high school athletes. Recent research has shown that subconcussive events experienced by collision sport athletes can be a further significant source of accrued damage. ⋯ During the period of exposure to subconcussive events, asymptomatic male (football) collision sport athletes exhibited statistically significant changes in concentrations of glutamate+glutamine (Glx) and total choline containing compounds (tCho) in dorsolateral prefrontal cortex, and female (soccer) collision sport athletes exhibited changes in glutamate+glutamine (Glx) in primary motor cortex. Neurometabolic alterations observed in football athletes during the second half of the season were found to be significantly associated with the average acceleration per head acceleration events, being best predicted by the accumulation of events exceeding 50 g. These marked deviations in neurometabolism, in the absence of overt symptoms, raise concern about the neural health of adolescent collision-sport athletes and suggest limiting exposure to head acceleration events may help to ameliorate the risk of subsequent cognitive impairment.