The Journal of pathology
-
Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. ⋯ While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection.
-
The Journal of pathology · Jan 2015
ReviewTissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses.
Ebola viruses and Marburg viruses include some of the most virulent and fatal pathogens known to humans. These viruses cause severe haemorrhagic fevers, with case fatality rates in the range 25-90%. The diagnosis of filovirus using formalin-fixed tissues from fatal cases poses a significant challenge. ⋯ In this review we discuss the current state of knowledge of filovirus infections and their pathogenesis, including histopathological findings, epidemiology, modes of transmission and filovirus entry and spread within host organisms. The pathogenesis of filovirus infections is complex and involves activation of the mononuclear phagocytic system, with release of pro-inflammatory cytokines, chemokines and growth factors, endothelial dysfunction, alterations of the innate and adaptive immune systems, direct organ and endothelial damage from unrestricted viral replication late in infection, and coagulopathy. Although our understanding of the pathogenesis of filovirus infections has rapidly increased in the past few years, many questions remain unanswered.
-
The Journal of pathology · Sep 2014
Breast cancer metastasis: demonstration that FOXP3 regulates CXCR4 expression and the response to CXCL12.
The X-linked transcription factor FOXP3 is expressed by epithelial cells of organs including the breast, where it is considered a tumour suppressor. The chemokine receptor CXCR4 also regulates the development of breast cancer by stimulating cell migration towards CXCL12-expressing sites of metastatic spread. During activation, human T cells show reciprocal regulation of FOXP3 and CXCR4. ⋯ These cells also showed a significantly increased chemotactic response towards CXCL12, consistent with a role for FOXP3 in the regulation of cell migration. Results from this study are consistent with FOXP3 functioning as an important tumour suppressor in breast cancer. Indeed, the potential functions of FOXP3 in breast epithelium can now be extended to include regulation of CXCR4 expression and response to the pro-metastatic chemokine CXCL12.
-
The Journal of pathology · Sep 2014
MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway.
Transforming growth factor-β (TGFβ) is crucial for liver fibrogenesis and the blunting of TGFβ signalling in hepatic stellate cells (HSCs) or hepatocytes can effectively inhibit liver fibrosis. microRNAs (miRNAs) have emerged as key regulators in modulating TGFβ signalling and liver fibrogenesis. However, the regulation of TGFβ receptor I (TβRI) production by miRNA remains poorly understood. Here we demonstrate that the miR-101 family members act as suppressors of TGFβ signalling by targeting TβRI and its transcriptional activator Kruppel-like factor 6 (KLF6) during liver fibrogenesis. ⋯ Additionally, miR-101 promoted the reversal of activated HSCs to a quiescent state, as indicated by suppression of proliferation and migration, loss of activation markers and gain of quiescent HSC-specific markers. In hepatocytes, miR-101 attenuated profibrogenic TGFβ signalling and suppressed the consequent up-regulation of profibrogenic cytokines, as well as TGFβ-induced hepatocyte apoptosis and the inhibition of cell proliferation. The pleiotropic roles of miR-101 in hepatic fibrogenesis suggest that it could be a potential therapeutic target for liver fibrosis.
-
The Journal of pathology · Aug 2014
MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer.
Tamoxifen is an endocrine therapy which is administered to up to 70% of all breast cancer patients with oestrogen receptor alpha (ERα) expression. Despite the initial response, most patients eventually acquire resistance to the drug. MicroRNAs (miRNAs) are a class of small non-coding RNAs which have the ability to post-transcriptionally regulate genes. ⋯ Finally, we could show that elevated miRNA-519a levels were inversely correlated with the target genes' expression and that higher expression of this miRNA correlated with poorer survival in ER+ breast cancer patients. Hence we have identified miRNA-519a as a novel oncomir, co-regulating a network of TSGs in breast cancer and conferring resistance to tamoxifen. Using inhibitors of such miRNAs may serve as a novel therapeutic approach to combat resistance to therapy as well as proliferation and evasion of apoptosis in breast cancer.