Anatomical sciences education
-
For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. ⋯ In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century.
-
Because of a decrease of the time available for anatomy education, decisions need to be made to reduce the relevant content of the anatomy curriculum. Several expert consensus initiatives resulted in lists of structures, lacking analysis of anatomical competence. This study aims to explore the use of anatomical knowledge by medical doctors in an attempt to delineate the nature of anatomical competence. ⋯ Conclusion is that young medical doctors actively use their anatomical knowledge and it seems that the relevant anatomy consists largely of adequate visual representations in memory. Anatomy teachers should focus the students' learning activity on building an adequate visual representation of anatomical structures. This should be supported by assessments that test the quality of the students' visual representations.
-
The one-minute preceptor (OMP) was originally developed in the ambulatory care setting as a time-efficient teaching technique for learner-centered clinical training. There are also possible advantages of using the OMP in the gross anatomy laboratory. However, in a previous study it was found that providing training to experienced gross anatomy teachers in the use of the OMP did not result in improvement in students' perceptions of their learning, probably because of the fact that the experienced teachers had already developed their own pedagogical approaches. ⋯ The novice teachers were receptive to the OMP. After the OMP training, the novice teachers were observed to engage more in getting commitments from the students and in reinforcing what the students have done right, two of the five OMP microskills. They considered the OMP to be very useful for their development as anatomy teachers.
-
Comparative Study
Integration of medical imaging including ultrasound into a new clinical anatomy curriculum.
In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the program as a part of anatomy practical sessions, in addition to dedicated lectures and tutorials given by imaging specialists. ⋯ In summary, 48% to 63% of the responding students thought that the specialist imaging lectures helped them learn effectively; 72% to 77% of students thought that the cross-sectional practical sessions helped them to better understand the imaging modalities of CT, MRI, and ultrasound; 76% to 80% of students considered hands-on ultrasound session to be useful in understanding the application of ultrasound in abdominal imaging. The results also revealed key similarities and differences in student perceptions of the new integrated curriculum for students with both a high and low prior exposure to anatomy. Further evaluation will aid in refining the integrated medical imaging program and providing its future direction.
-
In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the anatomical disciplines coupled with sufficient teaching experience to assume major educational responsibilities upon graduation and (2) to train students to conduct rigorous medical education research and other scholarly work necessary for promotion and tenure. The 90 credit hour curriculum consists of biomedical courses taught within the School of Medicine and education courses taught within the School of Education, including courses in health sciences pedagogy, curriculum development, learning theory, quantitative, and qualitative research methods, statistics, and electives. ⋯ Four students have received national recognition for their educational research and four graduates have obtained faculty appointments. Going forward, we must adapt the program's biomedical course requirements to incorporate the new integrated curriculum of the medical school, and we must secure additional funding to support more students. Overcoming these challenges will enable us to continue producing a small but stable supply of doctoral-level anatomy educators for a growing academic market.