Journal of breath research
-
Arterial lactate concentrations, taken as indicators of physical fitness, in athletes as well as in patients with cardio-respiratory or metabolic diseases, are measured invasively from arterialized ear lobe blood. Currently developed micro enzyme detectors permit a non-invasive measurement of hypoxia-related metabolites such as lactate in exhaled breath condensate (EBC). The aim of our study is to prove whether this technology will replace the traditional measurement of lactate in arterialized blood. ⋯ Detectable releases of lactate in exhaled breath condensate were found already under resting conditions. During exhausting external load on a bicycle spiroergometer, an increase in the lactate concentration was found in arterialized blood along with an increased lactate release in EBC. The correlation between expiratory lactate release via EBC and lactate concentration in arterialized blood is studied in pursuing investigations.
-
We have carried out a selected ion flow tube mass spectrometry (SIFT-MS) study of the concentrations of the sulfur-containing compounds H(2)S (using H(3)O(+) precursor ions), CH(3)SH (H(3)O(+)), (CH(3))(2)S (O(2)(+)), (CH(3))(2)S(2) (NO(+)) and CS(2) (O(2)(+)) in single exhalations of mouth-exhaled breath and nose-exhaled breath and in the static gas in the oral cavity for two healthy volunteers. The primary purpose of the study was to show how compounds present in breath at levels as low as a part per billion (ppb) can be identified and quantified if the overlap of 'impurity' isobaric ions with the analytical product ions for each trace compound is identified and accounted for. The H(2)S measurements are straightforward using H(3)O(+) precursor ions, since no overlapping ions are recognized and its breath concentration is relatively high at typically 20-70 ppb. ⋯ It was not possible to quantify CS(2) in the breath because of serious interference (overlapping ions) due to the presence of carbon dioxide and acetone that inevitably occur in exhaled breath. This study paves the way for the accurate analysis of these sulfur compounds in halitosis and potentially for probing the diseased state, especially liver disease, by breath analysis. To demonstrate the simplicity of measuring these compounds when they are present at levels of about 100 ppb and greater, data are presented on the emissions of these sulfur-containing compounds from Pseudomonas bacterial cultures in vitro.
-
The sensitivity of selected ion flow tube mass spectrometry, SIFT-MS, has been increased such that it is now possible to detect metabolites present at a part-per-billion, ppb, level in single breath exhalations. However, to utilize this improved sensitivity, the overlaps (coincidences) of those ions resulting from interfering reactions of impurity precursor ions with some breath metabolites present at higher concentrations with the analytical product ions characteristic of particular metabolites must be accounted for. ⋯ It is shown that when using H(3)O(+) to quantify formaldehyde and acetaldehyde the reactions of impurity O(2)(+) ions with methanol and ethanol (always present in breath) must be accounted for and that the quantification of acetaldehyde must avoid the interference of the CO(2) present in exhaled breath. Finally, it is indicated that the analysis of 2-propanol can be achieved using both H(3)O(+) and NO(+) precursor ions.
-
Analyses have been performed, using on-line selected ion flow tube mass spectrometry (SIFT-MS), of the breath of three healthy volunteers, as exhaled via the mouth and the nose and also of the air in the oral cavity during breath hold, each morning over a period of one month. Nine trace compounds have been quantified and concentration distributions have been constructed. Of these compounds, the levels of acetone, methanol and isoprene are the same in the mouth-exhaled and the nose-exhaled breath; hence, we deduce that these compounds are totally systemic. ⋯ Using the same ideas, both the low levels of propanol and acetaldehyde in mouth-exhaled breath appear to have both oral and systemic components. Formaldehyde is at levels in mouth- and nose-exhaled breath and the oral cavity that are lower than that of the ambient air and so its origin is difficult to ascertain, but it appears to be partially systemic. These results indicate that serious contamination of alveolar breath exhaled via the mouth can occur and if breath analysis is to be used to diagnose metabolic disease then analyses should be carried out of both mouth- and nose-exhaled breath to identify the major sources of particular trace compounds.