Anaesthesiology intensive therapy
-
Anaesthesiol Intensive Ther · Jan 2015
ReviewPerioperative goal directed therapy using automated closed-loop fluid management: the future?
Although surgery has become much safer, it has also becoming increasingly more complex and perioperative complications continue to impact millions of patients worldwide each year. Perioperative hemodynamic optimization utilizing Goal Directed Therapy (GDT) has attracted considerable interest within the last decade due to its ability to improve postoperative short and long-term outcomes in patients undergoing higher risk surgeries. The concept of GDT in this context can be loosely defined as collecting data from minimally invasive hemodynamic monitors with the intention of using such data (flow-related parameters and/or dynamic parameters of fluid responsiveness) to titrate therapeutic interventions (intravenous fluids and/or inotropic therapy administration) with the ultimate aim of optimizing end organ tissue perfusion. ⋯ As a result, hospitals and clinicians around the world have become increasingly incentivized to implement perioperative hemodynamic optimization using GDT strategies within their departments. Unfortunately, its adoption continues to be quite limited and a lack of standardized criteria for perioperative fluid administrations has resulted in significant clinical variability among practitioners. This current review will provide a brief up-to-date overview of GDT, discuss current clinical practice, analyze why implementation has been limited and finally, describe the newer closed-loop GDT concept along with its potential risks and benefits.
-
Anaesthesiol Intensive Ther · Jan 2015
ReviewAssessment of loading conditions with cardiac ultrasound. A comprehensive review.
Optimization of the preloading conditions and concomitant determination of endpoints of fluid administration are the most frequent therapeutic actions in critically ill patients. Besides a clinical appraisal, reproducible data should be acquired at the bedside to estimate the adequacy of fluid resuscitation. The dynamic assessment and determination of fluid responsiveness plays a major role in this respect. ⋯ Moreover, left sided variables, including aortic flow variation, with intermittent swings of intrathoracic pressure during mechanical ventilation, may be achieved non-invasively with Doppler-echocardiography. Both in terms of resuscitation, as well as correct interpretation of various two-dimensional and Doppler variables, it is essential to acquire a clear understanding of the filling status of a patient. Doppler-echocardiography plays herein a pivotal role.
-
Anaesthesiol Intensive Ther · Jan 2015
ReviewWhat every ICU clinician needs to know about the cardiovascular effects caused by abdominal hypertension.
The effects of increased intra-abdominal pressure (IAP) on cardiovascular function are well recognized and include a combined negative effect on preload, afterload and contractility. The aim of this review is to summarize the current knowledge on this topic. The presence of intra-abdominal hypertension (IAH) erroneously increases barometric filling pressures like central venous (CVP) and pulmonary artery occlusion pressure (PAOP) (since these are zeroed against atmospheric pressure). ⋯ Calculation of the abdominal perfusion pressure (as mean arterial pressure minus IAP) has been shown to be a better resuscitation endpoint than IAP alone. Finally, it is re-assuring that transpulmonary thermodilution techniques have been validated in the setting of IAH and abdominal compartment syndrome. In conclusion, the clinician must be aware of the different effects of IAH on cardiovascular function in order to assess the volume status accurately and to optimize hemodynamic performance.
-
Anaesthesiol Intensive Ther · Jan 2015
ReviewHemodynamic monitoring: To calibrate or not to calibrate? Part 1 - Calibrated techniques.
Over recent decades, hemodynamic monitoring has evolved from basic cardiac output monitoring techniques to a broad variety of sophisticated monitoring devices with extra parameters. In order to reduce morbidity and mortality and optimize therapeutic strategies, different monitoring techniques can be used to guide fluid resuscitation and other medical management. Generally, they can be divided in calibrated and non-calibrated techniques. ⋯ However in complex situations or in patients not responding to fluid resuscitation alone, advanced hemodynamic monitoring is recommended with the use of calibrated techniques like transpulmonary thermodilution. Calibrated techniques are preferred in patients with severe shock and changing conditions of preload, afterload and contractility. The use of the pulmonary artery catheter should be reserved for patients with right ventricular failure in order to assess the effect of medical treatment.
-
Anaesthesiol Intensive Ther · Jan 2015
ReviewWhat's new in medical management strategies for raised intra-abdominal pressure: evacuating intra-abdominal contents, improving abdominal wall compliance, pharmacotherapy, and continuous negative extra-abdominal pressure.
In the future, medical management may play an increasingly important role in the prevention and management of intra-abdominal hypertension (IAH). A review of different databases was used (PubMed, MEDLINE and EMBASE) with the search terms 'Intra-abdominal Pressure' (IAP), 'IAH', ' Abdominal Compartment Syndrome' (ACS), 'medical management' and 'non-surgical management'. We also reviewed all papers with the search terms 'IAH', 'IAP' and 'ACS' over the last three years, only extracting those papers which showed a novel approach in the non-surgical management of IAH and ACS. ⋯ Many treatment options are available and are often part of routine daily management in the ICU (nasogastric, rectal tube, prokinetics, enema, sedation, body position). Some of the newer treatments are very promising options in specific patient populations with raised IAP. Future studies are warranted to confirm some of these findings.