Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
-
Neuropsychopharmacology · Mar 2013
Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products.
The abuse of psychoactive 'bath salts' containing cathinones such as 3,4-methylenedioxypyrovalerone (MDPV) is a growing public health concern, yet little is known about their pharmacology. Here, we evaluated the effects of MDPV and related drugs using molecular, cellular, and whole-animal methods. In vitro transporter assays were performed in rat brain synaptosomes and in cells expressing human transporters, while clearance of endogenous dopamine was measured by fast-scan cyclic voltammetry in mouse striatal slices. ⋯ Additionally, MDPV (0.1-3.0 mg/kg, subcutaneous) is at least 10 times more potent than cocaine at producing locomotor activation, tachycardia, and hypertension in rats. Our data show that MDPV is a monoamine transporter blocker with increased potency and selectivity for catecholamines when compared with cocaine. The robust stimulation of dopamine transmission by MDPV predicts serious potential for abuse and may provide a mechanism to explain the adverse effects observed in humans taking high doses of 'bath salts' preparations.
-
Neuropsychopharmacology · Mar 2013
Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment.
Major depression is thought to originate from the interaction between susceptibility genes and adverse environmental events, in particular stress. The hypothalamus-pituitary-adrenal (HPA) axis is the major system involved in stress response and its dysregulation is an important element in the pathogenesis of depression. The stress response is therefore finely tuned through a series of mechanisms that control the trafficking of glucocorticoid receptors (GRs) to the nucleus, including binding to the chaperone protein FKBP5 and receptor phosphorylation, suggesting that these elements may also be affected under pathologic conditions. ⋯ Chronic treatment with the antidepressant duloxetine is able to normalize such alterations, mainly in the prefrontal cortex. Moreover, we demonstrate that CMS-induced alterations of GR trafficking and transcription may be sustained by changes in receptor phosphorylation, which are also modulated by pharmacological intervention. In summary, while GR-related changes after CMS might be relevant for the depressive phenotype, the ability of antidepressant treatment to correct some of these alterations may contribute to the normalization of HPA axis dysfunctions associated with stress-related disorders.
-
Neuropsychopharmacology · Feb 2013
Randomized Controlled Trial Multicenter StudyA randomized, double-blind, placebo-controlled phase 2 study of α4β2 agonist ABT-894 in adults with ADHD.
Dysregulation of the neuronal nicotinic acetylcholine receptor (NNR) system has been implicated in attention-deficit/hyperactivity disorder (ADHD), and nicotinic agonists improve attention across preclinical species and humans. Hence, a randomized, double-blind, placebo-controlled, crossover study was designed to determine the safety and efficacy of a novel α4β2 NNR agonist (ABT-894 (3-(5,6-dichloro-pyridin-3-yl)-1(S),5 (S)-3,6-diazabicyclo[3.2.0]heptane)) in adults with ADHD. Participants (N=243) were randomized to one of four dose regimens of ABT-894 (1, 2, and 4 mg once daily (QD)) or 4 mg twice daily (BID) or the active comparator atomoxetine (40 mg BID) vs placebo for 28 days. ⋯ Overall, ABT-894 was well tolerated at all dose levels. These results provide initial proof of concept for the use of α4β2 agonists in the treatment of adults with ADHD. Further investigation of ABT-894, including higher doses, is therefore warranted.
-
Neuropsychopharmacology · Feb 2013
Randomized Controlled TrialInteracting effects of naltrexone and OPRM1 and DAT1 variation on the neural response to alcohol cues.
Variation at a single nucleotide polymorphism in the μ-opioid receptor gene (OPRM1), A118G (Asn40Asp), may moderate naltrexone (NTX) effects in alcohol dependence. Both NTX and A118G variation have also been reported to affect alcohol cue-elicited brain activation. This study investigated whether sub-acute NTX treatment and A118G genotype interacted in their effects on cue-elicited activation of the ventral striatum (VS), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). ⋯ There was a three-way interaction between medication and A118G and DAT1 genotypes on VS activation, such that, among G-allele carriers who received NTX, DAT1 10-repeat-allele (10R) homozygotes had less activation than 9-repeat-allele (9R) carriers. Further, 10R homozygotes who received NTX had less mPFC activation than 9R carriers. Polymorphic variation in OPRM1 and DAT1 should be considered in future studies of NTX, particularly regarding its effects on reward processing.