Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
-
Neuropsychopharmacology · Dec 2009
Contribution of hypothalamic-pituitary-adrenal activity and environmental stress to vulnerability for smoking in adolescents.
Although tobacco smoking, which has been linked to depression, is a major public health problem, little is known about the neurobiological factors that confer vulnerability to smoking in youngsters and the effects of adolescent smoking on the course of depression. This study examined whether hypothalamic-pituitary-adrenal (HPA) activity and stressful life experiences are related to smoking behavior in depressed and non-depressed adolescents, and whether smoking predicts a worsening course of depression. Smoking history and stressful experiences were assessed in 151 adolescents (48 with no personal or family history of psychiatric disorder, 48 with no psychiatric history, but at high risk for depression by virtue of parental depression, and 55 with current major depressive disorder). ⋯ A model that included stressful experiences and cortisol levels reduced the contribution of smoking per se to depression. High evening/night-time cortisol level appears to be a vulnerability marker for smoking in adolescents, with stressful experiences further increasing the risk for smoking in vulnerable youth. High evening/night-time cortisol levels and stressful experiences accounted, at least partially, for the association between depressive illness and smoking behavior.
-
Neuropsychopharmacology · Dec 2009
Controlled Clinical TrialDifferential effects of tri-allelic 5-HTTLPR polymorphisms in healthy subjects on mood and stress performance after tryptophan challenge.
Earlier data suggest that a polymorphism at the serotonin (5-HT) transporter gene (5-HTTLPR) may affect depression particularly in the face of stress due to interactions between 5-HT vulnerability and stress exposure. However, this interaction between 5-HT transporter-linked transcriptional promoter region (5-HTTLPR), 5-HT vulnerability and the affective effects of stress exposure has not yet been investigated. As participants with short-allele 5-HTTLPR genotypes may exhibit enhanced 5-HT vulnerability, this study examines the effects of tryptophan challenge on stress reactivity and performance in healthy participants with S'/S' vs L'/L' genotypes. ⋯ Although there were no 5-HTTLPR-related differences in stress responses, significant beneficial effects of tryptophan challenge on mood and stress performance were exclusively found in participants with S'/S' genotypes. These findings suggest greater brain 5-HT vulnerability to tryptophan manipulations in participants with S'/S' as compared with L'/L' 5-HTTLPR genotypes. This apparent genetic 5-HT vulnerability may become a meaningful risk factor for depression when brain 5-HT falls below functional need in the face of real severe stressful life events.
-
Neuropsychopharmacology · Nov 2009
Nicotinic activation of laterodorsal tegmental neurons: implications for addiction to nicotine.
Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. ⋯ We also found that direct nicotinic actions on cholinergic LDT neurons were mediated by receptors containing alpha 7, beta2, and non-alpha 7 subunits. These findings led us to suggest that nicotine exposure from smoking will enhance both the excitability and synaptic modulation of cholinergic and non-cholinergic LDT neurons, and increase their signature neurotransmitter outflow to target regions, including the VTA. This may reinforce the direct actions of this drug within reward circuitry and contribute to encoding stimulus saliency.
-
Neuropsychopharmacology · Sep 2009
Randomized Controlled Trial Multicenter StudyDopamine genes and nicotine dependence in treatment-seeking and community smokers.
We utilized a cohort of 828 treatment-seeking self-identified white cigarette smokers (50% female) to rank candidate gene single nucleotide polymorphisms (SNPs) associated with the Fagerström Test for Nicotine Dependence (FTND), a measure of nicotine dependence which assesses quantity of cigarettes smoked and time- and place-dependent characteristics of the respondent's smoking behavior. A total of 1123 SNPs at 55 autosomal candidate genes, nicotinic acetylcholine receptors and genes involved in dopaminergic function, were tested for association to baseline FTND scores adjusted for age, depression, education, sex, and study site. SNP P-values were adjusted for the number of transmission models, the number of SNPs tested per candidate gene, and their intragenic correlation. ⋯ The SLC6A3 SNPs have previously been shown to be associated with SLC6A3 transcription or dopamine transporter density in vitro, in vivo, and ex vivo. Analysis of SLC6A3 and NR4A2 SNPs identified a statistically significant gene-gene interaction (P=0.001), consistent with in vitro evidence that the NR4A2 protein product (NURR1) regulates SLC6A3 transcription. A community cohort of N=175 multiplex ever-smoking pedigrees (N=423 ever smokers) provided nominal evidence for association with the FTND at these top ranked SNPs, uncorrected for multiple comparisons.
-
Abused inhalants are widely used, especially among school-age children and teenagers, and are 'gateway' drugs leading to the abuse of alcohol and other addictive substances. In spite of this widespread use, little is known about the effects produced by inhalants on the central nervous system. The similarity in behavioral effects produced by inhalants and inhaled anesthetics, together with their common chemical features, prompted this study of inhalant actions on a well-characterized anesthetic target, GABA synapses. ⋯ The enhanced inhibition appeared to come about by a presynaptic action on GABA nerve terminals, because spontaneous inhibitory postsynaptic current (IPSC) frequency was increased with no change in the amplitude of postsynaptic currents, both in the presence and absence of tetrodotoxin used to block interneuron action potentials and cadmium used to block calcium influx into nerve terminals. The toluene-induced increase in mIPSC frequency was blocked by dantrolene or ryanodine, indicating that the abused inhalant acted to increase the release of calcium from intracellular nerve terminal stores. This presynaptic action produced by abused inhalants is shared by inhaled anesthetics and would contribute to the altered behavioral effects produced by both classes of drugs, and could be especially important in the context of a disruption of learning and memory by abused inhalants.