Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
-
Neuropsychopharmacology · May 2007
Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test.
Alterations in central monoaminergic neurotransmission are important in the actions of many antidepressants. This study tested the hypothesis that tonic elevation of noradrenergic (NA) neurotransmission in medial prefrontal cortex (mPFC) by chronic treatment with the selective norepinephrine (NE) reuptake blocker desipramine (DMI) may contribute to the beneficial cognitive effects of this antidepressant drug (AD). Male Sprague-Dawley rats were treated with DMI acutely (15 mg/kg, i.p.) or chronically for 21 days (7.5 mg/kg/day via osmotic minipump) before assessing performance on an attentional set-shifting test. ⋯ Chronic DMI treatment tonically elevated basal extracellular NE levels in mPFC, associated with a significant improvement in performance specifically on the extradimensional set-shifting component of the test. There was also a significant reduction in set loss errors in rats treated chronically with DMI. Hence, tonic elevation of NA transmission in mPFC by chronic DMI treatment was associated with a time-dependent facilitation of cognitive flexibility that may contribute to the mechanism whereby chronic treatment with ADs, specifically NE reuptake blockers, may exert a beneficial therapeutic effect on cognition in depressed patients.
-
Neuropsychopharmacology · Apr 2007
The orexin-1 receptor antagonist SB-334867 blocks the effects of antipsychotics on the activity of A9 and A10 dopamine neurons: implications for antipsychotic therapy.
Antipsychotic drugs alter the activity of dopamine neurons in the ventral tegmental area (A10) and substantia nigra pars compacta (A9). As there is a dense projection of orexin neurons from the lateral hypothalamus to A10 dopaminergic neurons, and some antipsychotics have been shown to increase the expression of c-fos in orexin-containing cells in the hypothalamus, we hypothesized that stimulation of orexin receptors plays a role in the effects of antipsychotics on the activity of A9 and A10 dopamine cells. ⋯ However, SB-334867 did not block a different electrophysiological effect of olanzapine, as it did not block the olanzapine-induced activation of LC cells. These results indicate that activation of orexin-1 receptors plays an important role on the effects of antipsychotic drugs on dopamine neuronal activity and may play an important role in the clinical effects of antipsychotic drugs.
-
Neuropsychopharmacology · Feb 2007
ReviewEarly pharmacological treatment of autism: a rationale for developmental treatment.
Autism is a dynamic neurodevelopmental syndrome in which disabilities emerge during the first three postnatal years and continue to evolve with ongoing development. We briefly review research in autism describing subtle changes in molecules important in brain development and neurotransmission, in morphology of specific neurons, brain connections, and in brain size. We then provide a general schema of how these processes may interact with particular emphasis on neurotransmission. ⋯ Early treatment with selective serotonin reuptake inhibitors (SSRIs) is presented as a model for pharmacologic interventions because there is evidence in autistic children for reduced brain serotonin synthesis during periods of peak synaptogenesis; serotonin is known to enhance synapse refinement; and exploratory studies with these agents in autistic children exist. Additional hypothetical developmental interventions and relevant published clinical data are described. Finally, we discuss the importance of exploring early pharmacologic interventions within multiple experimental settings in order to develop effective treatments as quickly as possible while minimizing risks.
-
Neuropsychopharmacology · Feb 2007
Comparative StudyEvidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study.
Although brain imaging studies have reported neurobiological abnormalities in autism, the nature and distribution of the underlying neurochemical irregularities are unknown. The purpose of this study was to examine cerebral gray and white matter cellular neurochemistry in autism with proton magnetic resonance spectroscopic imaging (MRSI). ⋯ These results suggest widespread reductions in gray matter neuronal integrity and dysfunction of cortical and cerebellar glutamatergic neurons in patients with autism.
-
Neuropsychopharmacology · Feb 2007
Smoking modulation of mu-opioid and dopamine D2 receptor-mediated neurotransmission in humans.
This is a pilot examination of the hypothesis that some of the effects of smoking cigarettes in humans are mediated through nicotine activation of opioid and dopamine (DA) neurotransmission. Neuroimaging was performed using positron emission tomography and the radiotracers [11C]carfentanil and [11C]raclopride, labeling mu-opioid and DA D2 receptors, respectively. Six healthy male smokers were abstinent overnight. ⋯ Lower mu-opioid receptor BP was also detected during the denicotinized smoking condition in the smoker group, compared to baseline scans in non-smokers, in the cingulate cortex, thalamus, ventral basal ganglia, and amygdala. These reductions were reversed during the average nicotine condition in the thalamus, ventral basal ganglia and amygdala. These data point to both the feasibility of simultaneously examining opioid and DA neurotransmission responses to smoking in humans, as well as to the need to examine non-nicotine aspects of smoking to more fully understand the behavioral effects of this drug.