Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
-
Neuropsychopharmacology · Oct 2016
Randomized Controlled TrialOpioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype.
The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. ⋯ Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.
-
Neuropsychopharmacology · Jul 2016
Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice.
The basal forebrain (BF) cholinergic neurons have long been thought to be involved in behavioral wakefulness and cortical activation. However, owing to the heterogeneity of BF neurons and poor selectivity of traditional methods, the precise role of BF cholinergic neurons in regulating the sleep-wake cycle remains unclear. We investigated the effects of cell-selective manipulation of BF cholinergic neurons on the sleep-wake behavior and electroencephalogram (EEG) power spectrum using the pharmacogenetic technique, the 'designer receptors exclusively activated by designer drugs (DREADD)' approach, and ChAT-IRES-Cre mice. ⋯ Abundant and highly dense hrGFP-positive fibers were observed in the secondary motor cortex and cingulate cortex, and sparse hrGFP-positive fibers were observed in the ventrolateral preoptic nucleus, a known sleep-related structure. Finally, we found that activation of BF cholinergic neurons significantly increased c-Fos expression in the secondary motor cortex and cingulate cortex, but decreased c-Fos expression in the ventrolateral preoptic nucleus. Taken together, these findings reveal that the primary function of BF cholinergic neurons is to inhibit EEG delta activity through the activation of cerebral cortex, rather than to induce behavioral wakefulness.
-
Neuropsychopharmacology · Jul 2016
Randomized Controlled Trial Multicenter StudyOral Cannabidiol does not Alter the Subjective, Reinforcing or Cardiovascular Effects of Smoked Cannabis.
Cannabidiol (CBD), a constituent of cannabis with few psychoactive effects, has been reported in some studies to attenuate certain aspects of Δ(9)-tetrahydrocannabinol (THC) intoxication. However, most studies have tested only one dose of CBD in combination with one dose of oral THC, making it difficult to assess the nature of this interaction. Further, the effect of oral CBD on smoked cannabis administration is unknown. ⋯ CBD, which alone produced no significant psychoactive or cardiovascular effects, did not significantly alter any of these outcomes. Cannabis self-administration, subjective effects, and cannabis ratings did not vary as a function of CBD dose relative to placebo capsules. These findings suggest that oral CBD does not reduce the reinforcing, physiological, or positive subjective effects of smoked cannabis.
-
Neuropsychopharmacology · Apr 2016
Dysfunctional Striatal Systems in Treatment-Resistant Schizophrenia.
The prevalence of treatment-resistant schizophrenia points to a discrete illness subtype, but to date its pathophysiologic characteristics are undetermined. Information transfer from ventral to dorsal striatum depends on both striato-cortico-striatal and striato-nigro-striatal subcircuits, yet although the functional integrity of the former appears to track improvement of positive symptoms of schizophrenia, the latter have received little experimental attention in relation to the illness. Here, in a sample of individuals with schizophrenia stratified by treatment resistance and matched controls, functional pathways involving four foci along the striatal axis were assessed to test the hypothesis that treatment-resistant and non-refractory patients would exhibit contrasting patterns of resting striatal connectivity. ⋯ Furthermore, disturbance to corticostriatal connectivity was more pervasive in treatment-resistant individuals. The occurrence of a more distributed pattern of abnormality may contribute to the failure of medication to treat symptoms in these individuals. This work strongly supports the notion of pathophysiologic divergence between individuals with schizophrenia classified by treatment-resistance criteria.
-
Neuropsychopharmacology · Apr 2016
The Stomach-Derived Hormone Ghrelin Increases Impulsive Behavior.
Impulsivity, defined as impaired decision making, is associated with many psychiatric and behavioral disorders, such as attention-deficit/hyperactivity disorder as well as eating disorders. Recent data indicate that there is a strong positive correlation between food reward behavior and impulsivity, but the mechanisms behind this relationship remain unknown. Here we hypothesize that ghrelin, an orexigenic hormone produced by the stomach and known to increase food reward behavior, also increases impulsivity. ⋯ Ghrelin receptor stimulation within the VTA was sufficient to increase impulsive behavior. We further evaluated the impact of ghrelin on dopamine-related gene expression and dopamine turnover in brain areas key in impulsive behavior control. This study provides the first demonstration that the stomach-produced hormone ghrelin increases impulsivity and also indicates that ghrelin can change two major components of impulsivity-motor and choice impulsivity.