Oxidative medicine and cellular longevity
-
Oxid Med Cell Longev · Jan 2015
ReviewPulmonary Protection Strategies in Cardiac Surgery: Are We Making Any Progress?
Pulmonary dysfunction is a common complication of cardiac surgery. The mechanisms involved in the development of pulmonary dysfunction are multifactorial and can be related to the activation of inflammatory and oxidative stress pathways. ⋯ Different pulmonary protection strategies have evolved over the years; however, the wide acceptance and clinical application of such techniques remain hindered by the poor level of evidence or the sample size of the studies. A better understanding of available modalities and/or combinations can result in the development of customised strategies for the different cohorts of patients with the potential to hence maximise patients and institutes benefits.
-
The development of the cardiopulmonary bypass (CPB) revolutionized cardiac surgery and contributed immensely to improved patients outcomes. CPB is associated with the activation of different coagulation, proinflammatory, survival cascades and altered redox state. ⋯ The administration of agents with antioxidant properties during surgery either intravenously or in the cardioplegia solution may reduce ROS burst and oxidative stress during CPB. Alternatively, the use of modified circuits such as minibypass can modify both proinflammatory responses and oxidative stress.
-
Oxid Med Cell Longev · Jan 2015
Polydatin Alleviates Small Intestine Injury during Hemorrhagic Shock as a SIRT1 Activator.
To evaluate the role of SIRT1 in small intestine damage following severe hemorrhagic shock and to investigate whether polydatin (PD) can activate SIRT1 in shock treatment. ⋯ The results collectively suggest a role for the SIRT1-PGC-1α-SOD2 axis in small intestine injury following severe hemorrhagic shock and that PD is an effective SIRT1 activator for the shock treatment.
-
Oxid Med Cell Longev · Jan 2014
Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.
Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. ⋯ Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.
-
Oxid Med Cell Longev · Jan 2014
Oxidative damage to nucleic acids and benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA adducts and chromosomal aberration in children with psoriasis repeatedly exposed to crude coal tar ointment and UV radiation.
The paper presents a prospective cohort study. Observed group was formed of children with plaque psoriasis (n=19) treated by Goeckerman therapy (GT). The study describes adverse (side) effects associated with application of GT (combined exposure of 3% crude coal tar ointment and UV radiation). ⋯ The findings indicated increased hazard of oxidative stress and genotoxic effects related to the treatment. However, it must be noted that the oxidized guanine species and BPDE-DNA adducts also reflect individual variations in metabolic enzyme activity (different extent of bioactivation of benzo[a]pyrene to BPDE) and overall efficiency of DNA/RNA repair system. The study confirmed good effectiveness of the GT (significantly decreased PASI score).