Drug testing and analysis
-
Drug testing and analysis · Jun 2019
Metabolic profiling of synthetic cannabinoid 5F-ADB by human liver microsome incubations and urine samples using high-resolution mass spectrometry.
5F-ADB (methyl 2-{[1-(5-fluoropentyl)-1H-indazole-3-carbonyl] amino}-3,3-dimethylbutanoate) is a frequently abused new synthetic cannabinoid that has been sold since at least the end of 2014 on the drug market and has been classified as an illicit drug in most European countries, as well as Turkey, Japan, and the United States. In this study, the in vitro metabolism of 5F-ADB was investigated by using pooled human liver microsomes (HLMs) assay and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). 5F-ADB (5 μmol/L) was incubated with HLMs for up to 3 hours, and the metabolites were identified using LC-HRMS and software-assisted data mining. The in vivo metabolism was investigated by the analysis of 30 authentic urine samples and was compared to the data received from the in vitro metabolism study. ⋯ In 12 urine samples (n = 30), 5F-ADB was detected as the parent drug. Three of the identified main metabolites 5F-ADB carboxylic acid (M20), monohydroxypentyl-5F-ADB (M17), and carboxypentyl ADB carboxylic acid (M8) were suggested as suitable urinary markers. The screening of 8235 authentic urine samples for identified 5F-ADB metabolites in vitro resulted in 3135 cases of confirmed 5F-ADB consumption (38%).
-
Drug testing and analysis · May 2019
Doping control analysis of four JWH-250 metabolites in equine urine by liquid chromatography-tandem mass spectrometry.
JWH-250 is a synthetic cannabinoid. Its use is prohibited in equine sport according to the Association of Racing Commissioners International (ARCI) and the Fédération Équestre Internationale (FEI). A doping control method to confirm the presence of four JWH-250 metabolites (JWH-250 4-OH-pentyl, JWH-250 5-OH-pentyl, JWH-250 5-OH-indole, and JWH-250 N-pentanoic acid) in equine urine was developed and validated. ⋯ Relative retention time and product ion intensity ratios were employed as the criteria to confirm the presence of these metabolites in equine urine. The method was successfully applied to post-race urine samples collected from horses suspected of being exposed to JWH-250. All four JWH-250 metabolites were confirmed in these samples, demonstrating the method applicability for equine doping control analysis.
-
Drug testing and analysis · Mar 2019
Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines: An update comprising flunitrazolam, norflurazepam, and 4'-chlorodiazepam (Ro5-4864).
The number of newly appearing benzodiazepine derivatives on the new psychoactive substances (NPS) drug market has increased over the last couple of years totaling 23 'designer benzodiazepines' monitored at the end of 2017 by the European Monitoring Centre for Drugs and Drug Addiction. In the present study, three benzodiazepines [flunitrazolam, norflurazepam, and 4'-chlorodiazepam (Ro5-4864)] offered as 'research chemicals' on the Internet were characterized and their main in vitro phase I metabolites tentatively identified after incubation with pooled human liver microsomes. For all compounds, the structural formula declared by the vendor was confirmed by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC MS/MS), liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analysis and nuclear magnetic resonance (NMR) spectroscopy. ⋯ The detected in vitro phase I metabolites of norflurazepam were hydroxynorflurazepam and dihydroxynorflurazepam. 4'-Chlorodiazepam biotransformation consisted of N-dealkylation and hydroxylation. It has to be noted that 4'-chlorodiazepam and its metabolites show almost identical LC-MS/MS fragmentation patterns to diclazepam and its metabolites (delorazepam, lormetazepam, and lorazepam), making a sufficient chromatographic separation inevitable. Sale of norflurazepam, the metabolite of the prescribed benzodiazepines flurazepam and fludiazepam, presents the risk of incorrect interpretation of analytical findings.
-
Drug testing and analysis · Feb 2019
Detection of the designer benzodiazepine flunitrazolam in urine and preliminary data on its metabolism.
Designer benzodiazepines have emerged as recreational drugs. They are available via the Internet without control and are found in the form of falsified (fake) medicines. For some of them, limited information concerning their effects, their toxicity, and their detection in bio fluids is available in the literature. ⋯ In vitro experiments (HLM incubations) were performed using ultra performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-QTOF-MS) in order to investigate the potential CYP- and UGT-dependent metabolites where only 7-amino-FNTZ was detected as the only metabolite. However, in the urine specimens, desnitro-FNTZ, 7-acetamido-FNTZ and 7-amino-FNTZ were the main detected compounds. The identification of FNTZ metabolites dramatically improves the detection windows of the drug up to 37 hours.
-
Drug testing and analysis · Feb 2019
Simultaneous quantification of THC-COOH, OH-THC, and further cannabinoids in human hair by gas chromatography-tandem mass spectrometry with electron ionization applying automated sample preparation.
The detection of Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in hair, for the purpose of identifying cannabis consumption, is conducted in many forensic laboratories. Since external contamination of hair with these cannabis components cannot be excluded, even after hair decontamination, only the detection of THC metabolites such as 11-nor-9-carboxy-Δ9 -tetrahydrocannabinol (THC-COOH) or 11-hydroxy-Δ9 -tetrahydrocannabinol (OH-THC), is considered to prove cannabis consumption. At present, testing for THC metabolites is not standard practice due to its analytical complexity. ⋯ Derivatization of all analytes was by silylation. The method has been fully validated according to guidelines of the Society of Toxicological and Forensic Chemistry (GTFCh), with a limit of detection (LOD) of 0.2 pg/mg for THC-COOH and OH-THC and 2 pg/mg for THC, CBD and CBN, respectively, thus fulfilling the Society of Hair Testing (SoHT) recommendations. The validated method has been successfully applied to our routine forensic case work and a summary of data from authentic hair samples is given, as well as data from proficiency tests.