Journal of nuclear medicine : official publication, Society of Nuclear Medicine
-
Comparative Study
Comparison of Static and Dynamic 18F-FDG PET/CT for Quantification of Pulmonary Inflammation in Acute Lung Injury.
PET imaging with 18F-FDG followed by mathematic modeling of the pulmonary uptake rate (Ki) is the gold standard for assessment of pulmonary inflammation in experimental studies of acute respiratory distress syndrome (ARDS). However, dynamic PET requires long imaging and allows the assessment of only 1 cranio-caudal field of view (∼15 cm). We investigated whether static 18F-FDG PET/CT and analysis of SUV or standardized uptake ratios (SURstat, uptake time-corrected ratio of 18F-FDG concentration in lung tissue and blood plasma) might be an alternative to dynamic 18F-FDG PET/CT and Patlak analysis for quantification of pulmonary inflammation in experimental ARDS. ⋯ Compared with Ki, SURstat and SUV tracked the same direction of change in regional lung inflammation in 98.6% and 84.3% of measurements, respectively. Conclusion: The Ki-SURstat correlations were considerably stronger than the Ki-SUV correlations. The good Ki-SURstat correlations suggest that static 18F-FDG PET/CT and SURstat analysis provides an alternative to dynamic 18F-FDG PET/CT and Patlak analysis, allowing the assessment of inflammation of whole lungs, repeated measurements within the period of 18F-FDG decay, and faster data acquisition.
-
Despite the great media attention for artificial intelligence (AI), for many health care professionals the term and the functioning of AI remain a "black box," leading to exaggerated expectations on the one hand and unfounded fears on the other. In this review, we provide a conceptual classification and a brief summary of the technical fundamentals of AI. ⋯ The main limitations of current AI techniques, such as issues with interpretability or the need for large amounts of annotated data, are briefly addressed. Finally, we highlight the possible impact of AI on the nuclear medicine profession, the associated challenges and, last but not least, the opportunities.
-
Our purpose was to assess whether the addition of data from multiparametric pelvic MRI (mpMR) and whole-body MRI (wbMR) to the interpretation of 18F-fluoromethylcholine (18F-FCH) or 68Ga-HBED-CC PSMA-11 (68Ga-PSMA) PET/CT (=PET) improves the detection of local tumor recurrence or of nodal and distant metastases in patients after radical prostatectomy with biochemical failure. Methods: The current analysis was performed as part of a prospective, multicenter trial on 18F-FCH or 68Ga-PSMA PET, mpMR, and wbMR. Eligible men had an elevated level of prostate-specific antigen (PSA) (>0.2 ng/mL) and high-risk features (Gleason score > 7, PSA doubling time < 10 mo, or PSA > 1.0 ng/mL) with negative or equivocal conventional imaging results. ⋯ Compared with the composite reference standard for the detection of disease beyond the prostatic fossa, PET/wbMR, PET, and wbMR had sensitivity of 50%, 50%, and 8.3%, respectively, and specificity of 97.1%, 97.1%, and 94.1%, respectively. Conclusion: Interpretation of PET/mpMR resulted in a higher detection rate for local tumor recurrence in the prostatic bed in men with biochemical failure after radical prostatectomy. However, the addition of wbMR to 18F-FCH or 68Ga-PSMA PET did not improve detection of regional or distant metastases.
-
Multicenter Study
Healthy Tissue Uptake of 68Ga-Prostate-Specific Membrane Antigen, 18F-DCFPyL, 18F-Fluoromethylcholine, and 18F-Dihydrotestosterone.
PET is increasingly used for prostate cancer (PCa) diagnostics. Important PCa radiotracers include 68Ga-prostate-specific membrane antigen HBED-CC (68Ga-PSMA), 18F-DCFPyL, 18F-fluoromethylcholine (18F-FCH), and 18F-dihydrotestosterone (18F-FDHT). Knowledge on the variability of tracer uptake in healthy tissues is important for accurate PET interpretation, because malignancy is suspected only if the uptake of a lesion contrasts with its background. ⋯ Conclusion: In this multicenter analysis, healthy tissues with limited uptake variability were identified, which may serve as reference regions for PCa PET interpretation. These reference regions include the blood pool for 68Ga-PSMA and 18F-DCFPyL and the liver for 18F-FCH and 18F-FDHT. Healthy tissue SUV reference ranges are presented and applicable as image-based quality control.
-
Accurate detection of prostate cancer lymph node metastases (LNM) through PET/CT before lymphadenectomy is crucial for successful therapy. PET/CT with choline derivatives used to be the standard tool for imaging metastases, whereas 68Ga-PSMA (prostate-specific membrane antigen) PET/CT was introduced recently. Both PET techniques were investigated with respect to what extent the detection rate of LNM depends on the size of tumor deposits (TDs) within LNM. ⋯ Detection rates were significantly higher under 68Ga-PSMA (P = 0.005 and 0.04 for longitudinal and short diameter). Conclusion:68Ga-PSMA PET/CT is superior to 18F-choline PET/CT in the detection of LNM. Whether those results will lead to an improved patient outcome after 68Ga-PSMA PET-guided therapy needs to be investigated by further studies.