Journal of nuclear medicine : official publication, Society of Nuclear Medicine
-
Randomized Controlled Trial Comparative Study
Optimized contrast-enhanced CT protocols for diagnostic whole-body 18F-FDG PET/CT: technical aspects of single-phase versus multiphase CT imaging.
The purpose of this study was to compare various PET/CT examination protocols that use contrast-enhanced single-phase or contrast-enhanced multiphase CT scans under different breathing conditions. ⋯ Multiphase CT protocols presented a technical disadvantage represented by suboptimal image coregistration compared with single-phase protocols. Nevertheless, multiphase protocols are technically feasible and should be considered for patients who will benefit from a contrast-enhanced multiphase CT examination for diagnosis.
-
The aim of this study was to compare the detection of bone metastases by 99mTc-methylene diphosphonate (99mTc-MDP) planar bone scintigraphy (BS), SPECT, 18F-Fluoride PET, and 18F-Fluoride PET/CT in patients with high-risk prostate cancer. ⋯ 18F-Fluoride PET/CT is a highly sensitive and specific modality for detection of bone metastases in patients with high-risk prostate cancer. It is more specific than 18F-Fluoride PET alone and more sensitive and specific than planar and SPECT BS. Detection of bone metastases is improved by SPECT compared with planar BS and by 18F-Fluoride PET compared with SPECT. This added value of 18F-Fluoride PET/CT may beneficially impact the clinical management of patients with high-risk prostate cancer.
-
Clinical Trial
Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer.
The incidence of malignancy associated with subcentimeter pulmonary nodules (micronodules) in patients with malignant disease has been reported to be as high as 58%. Thus, detection of small lung nodules is important for appropriate staging of lung cancer. Because of respiratory motion, small parenchymal lung lesions can be missed on CT acquired during shallow breathing. Micronodules are usually too small to be characterized reliably with 18F-FDG PET. We aimed to determine the incidence of missed pulmonary micronodules on PET/CT studies acquired during shallow breathing. ⋯ Acquisition of standard PET/CT chest images during shallow breathing is inadequate for comprehensive cancer staging.
-
The SET-3000 G/X (clinical tomograph with high resolution and a large axial field of view) is a 3-dimensional (3D) (only) dedicated PET camera with germanium oxyorthosilicate (GSO) and bismuth germanate (BGO) scintillators. The main characteristic of the SET-3000 G/X PET scanner is 3D continuous-emission and spiral-transmission (CEST) scanning, yielding a reduction in whole-body scan time. We evaluated the physical performance of the SET-3000 G/X PET scanner with the National Electrical Manufacturers Association (NEMA) NU 2-2001 standard. ⋯ The new integrated SET-3000 G/X PET scanner has good overall performance, including high resolution and sensitivity, and has the potential of reducing whole-body acquisition time to less than 10 min while improving small-lesion detectability with a low radiation dose.
-
We investigated the effect of CT truncation in whole-body (WB) PET/CT imaging of large patients, and we evaluated the efficacy of an extended field-of-view (eFOV) correction technique. ⋯ Truncation artifacts in WB PET/CT led to visual and quantitative distortions of the CT and attenuation-corrected PET images in the area of truncation. These artifacts can be corrected to improve the accuracy of PET/CT for diagnosis and therapy response evaluation.