Nature reviews. Neurology
-
Nature reviews. Neurology · Jul 2012
ReviewSmall-fibre neuropathies--advances in diagnosis, pathophysiology and management.
Small-fibre neuropathy (SFN), a disorder of thinly myelinated Aδ-fibres and unmyelinated C-fibres, is clinically characterized by neuropathic pain symptoms and autonomic complaints. Diagnosis of SFN is challenging as the clinical picture can be difficult to interpret and results from nerve conduction studies are often normal. In cases of suspected SFN, measurement of intraepidermal nerve fibre density and/or analysis of quantitative sensory testing can enable diagnosis. ⋯ Gain-of-function variants in the Na(v)1.7 sodium channel have recently been found in nearly 30% of patients with idiopathic SFN, but the mechanisms of axonal degeneration in the disorder remain under investigation. Identification of the systemic diseases underlying SFN will enable development of drugs that target affected pathways to improve the management of neuropathic pain and autonomic dysfunction. In this Review, we discuss recent advances in the diagnosis and pathophysiology of SFN, highlighting how improved understanding of these aspects of the disorder will contribute to better patient management.
-
Nature reviews. Neurology · Jun 2012
ReviewThe autonomic effects of deep brain stimulation--a therapeutic opportunity.
Deep brain stimulation (DBS) is an expanding field in neurosurgery and has already provided important insights into the fundamental mechanisms underlying brain function. One of the most exciting emerging applications of DBS is modulation of blood pressure, respiration and micturition through its effects on the autonomic nervous system. DBS stimulation at various sites in the central autonomic network produces rapid changes in the functioning of specific organs and physiological systems that are distinct from its therapeutic effects on central nervous motor and sensory systems. ⋯ The beneficial effects of DBS also extend to improvements in lung function. This article includes an overview of the anatomy of the central autonomic network, which consists of autonomic nervous system components in the cortex, diencephalon and brainstem that project to the spinal cord or cranial nerves. The effects of DBS on physiological functioning (particularly of the cardiovascular and respiratory systems) are discussed, and the potential for these findings to be translated into therapies for patients with autonomic diseases is examined.