Science translational medicine
-
Widespread drug resistance due to empiric use of broad-spectrum antibiotics has stimulated development of bacteria-specific strategies for prophylaxis and therapy based on modern monoclonal antibody (mAb) technologies. However, single-mechanism mAb approaches have not provided adequate protective activity in the clinic. ⋯ BiS4αPa was protective in several mouse infection models against disparate P. aeruginosa strains and unexpectedly further synergized with multiple antibiotic classes even against drug-resistant clinical isolates. In addition to resulting in a multimechanistic clinical candidate (MEDI3902) for the prevention or treatment of P. aeruginosa infections, these antibody studies suggest that multifunctional antibody approaches may be a promising platform for targeting other antibiotic-resistant bacterial pathogens.
-
Randomized Controlled Trial
PCSK9 is a critical regulator of the innate immune response and septic shock outcome.
A decrease in the activity of proprotein convertase subtilisin/kexin type 9 (PCSK9) increases the amount of low-density lipoprotein (LDL) receptors on liver cells and, therefore, LDL clearance. The clearance of lipids from pathogens is related to endogenous lipid clearance; thus, PCSK9 may also regulate removal of pathogen lipids such as lipopolysaccharide (LPS). Compared to controls, Pcsk9 knockout mice displayed decreases in inflammatory cytokine production and in other physiological responses to LPS. ⋯ Human PCSK9 loss-of-function genetic variants were associated with improved survival in septic shock patients and a decrease in inflammatory cytokine response both in septic shock patients and in healthy volunteers after LPS administration. The PCSK9 effect was abrogated in LDL receptor (LDLR) knockout mice and in humans who are homozygous for an LDLR variant that is resistant to PCSK9. Together, our results show that reduced PCSK9 function is associated with increased pathogen lipid clearance via the LDLR, a decreased inflammatory response, and improved septic shock outcome.
-
Delayed recovery from surgery causes personal suffering and substantial societal and economic costs. Whether immune mechanisms determine recovery after surgical trauma remains ill-defined. Single-cell mass cytometry was applied to serial whole-blood samples from 32 patients undergoing hip replacement to comprehensively characterize the phenotypic and functional immune response to surgical trauma. ⋯ When regressed against clinical parameters of surgical recovery, including functional impairment and pain, strong correlations were found with STAT3 (signal transducer and activator of transcription), CREB (adenosine 3',5'-monophosphate response element-binding protein), and NF-κB (nuclear factor κB) signaling responses in subsets of CD14(+) monocytes (R = 0.7 to 0.8, false discovery rate <0.01). These sentinel results demonstrate the capacity of mass cytometry to survey the human immune system in a relevant clinical context. The mechanistically derived immune correlates point to diagnostic signatures, and potential therapeutic targets, that could postoperatively improve patient recovery.
-
Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. ⋯ This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation.
-
Resistance to the BCR-ABL inhibitor imatinib mesylate (IM) poses a major problem for the treatment of chronic myeloid leukemia (CML). IM resistance often results from a secondary mutation in BCR-ABL that interferes with drug binding. However, in many instances, there is no mutation in BCR-ABL, and the basis of such BCR-ABL-independent IM resistance remains to be elucidated. ⋯ Finally, we showed that CML stem cells contain high levels of PRKCH, and this contributes to their intrinsic IM resistance. Combined treatment with IM and trametinib synergistically kills CML stem cells with negligible effect on normal hematopoietic stem cells. Collectively, our results identify a therapeutically targetable mechanism of BCR-ABL-independent IM resistance in CML and CML stem cells.