Science translational medicine
-
Marburg virus (MARV) and the closely related filovirus Ebola virus cause severe and often fatal hemorrhagic fever (HF) in humans and nonhuman primates with mortality rates up to 90%. There are no vaccines or drugs approved for human use, and no postexposure treatment has completely protected nonhuman primates against MARV-Angola, the strain associated with the highest rate of mortality in naturally occurring human outbreaks. Studies performed with other MARV strains assessed candidate treatments at times shortly after virus exposure, before signs of disease are detectable. ⋯ Sixteen of these animals were treated with LNP containing anti-MARV NP siRNA beginning at 30 to 45 min, 1 day, 2 days, or 3 days after virus challenge. All 16 macaques that received LNP-encapsulated anti-MARV NP siRNA survived infection, whereas the untreated or mock-treated control subjects succumbed to disease between days 7 and 9 after infection. These results represent the successful demonstration of therapeutic anti-MARV-Angola efficacy in nonhuman primates and highlight the substantial impact of an LNP-delivered siRNA therapeutic as a countermeasure against this highly lethal human disease.
-
Sepsis is an aggressive inflammatory syndrome and a global health burden estimated to kill 7.3 million people annually. Single-target molecular therapies have not addressed the multiple disease pathways triggered by septic injury. Cell therapies might offer a broader set of mechanisms of action that benefit complex, multifocal disease processes. ⋯ When administered late in disease (16 hours after CLP), FRCs still conveyed a robust survival advantage (44% survival compared to 0% for controls). FRC therapy was dependent on the metabolic activity of nitric oxide synthase 2 (NOS2) as the primary molecular mechanism of drug action in the mice. Together, these data describe a new anti-inflammatory cell type and provide preclinical evidence for therapeutic efficacy in severe sepsis that warrants further translational study.
-
There is a critical need for effective new pharmacotherapies for pain. The paucity of new drugs successfully reaching the clinic calls for a reassessment of current analgesic drug discovery approaches. ⋯ In this review, we highlight approaches that are being pursued vigorously by the pain community for drug discovery, including innovative preclinical pain models, insights from genetics, mechanistic phenotyping of pain patients, development of biomarkers, and emerging insights into chronic pain as a disorder of both the periphery and the brain. Collaborative efforts between pharmaceutical, academic, and public entities to advance research in these areas promise to de-risk potential targets, stimulate investment, and speed evaluation and development of better pain therapies.
-
Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. ⋯ On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted.
-
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). Newly developed "correctors" such as lumacaftor (VX-809) that improve CFTR maturation and trafficking and "potentiators" such as ivacaftor (VX-770) that enhance channel activity may provide important advances in CF therapy. Although VX-770 has demonstrated substantial clinical efficacy in the small subset of patients with a mutation (G551D) that affects only channel activity, a single compound is not sufficient to treat patients with the more common CFTR mutation, ΔF508. ⋯ Chronic VX-770 treatment also reduced mature wild-type CFTR levels and function. These findings demonstrate that chronic treatment with CFTR potentiators and correctors may have unexpected effects that cannot be predicted from short-term studies. Combining these drugs to maximize rescue of ΔF508 CFTR may require changes in dosing and/or development of new potentiator compounds that do not interfere with CFTR stability.