Science translational medicine
-
The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) coronavirus is a major public health challenge. Rapid tests for detecting existing SARS-CoV-2 infections and assessing virus spread are critical. Approaches to detect viral RNA based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) have potential as simple, scalable, and broadly applicable testing methods. ⋯ Compared to an RT-qPCR assay using a sensitive primer set, we found that the RT-LAMP assay reliably detected SARS-CoV-2 RNA with an RT-qPCR cycle threshold (CT) number of up to 30, with a sensitivity of 97.5% and a specificity of 99.7%. We also developed a swab-to-RT-LAMP assay that did not require a prior RNA isolation step, which retained excellent specificity (99.5%) but showed lower sensitivity (86% for CT < 30) than the RT-LAMP assay. In addition, we developed a multiplexed sequencing protocol (LAMP-sequencing) as a diagnostic validation procedure to detect and record the outcome of RT-LAMP reactions.
-
The coronavirus disease 2019 (COVID-19) pandemic, caused by infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is having a deleterious impact on health services and the global economy, highlighting the urgent need for an effective vaccine. Such a vaccine would need to rapidly confer protection after one or two doses and would need to be manufactured using components suitable for scale up. Here, we developed an Alphavirus-derived replicon RNA vaccine candidate, repRNA-CoV2S, encoding the SARS-CoV-2 spike (S) protein. ⋯ In nonhuman primates, prime-only immunization in one intramuscular injection site or prime/boost immunizations in five intramuscular injection sites elicited modest T cell responses and robust antibody responses. The antibody responses persisted for at least 70 days and neutralized SARS-CoV-2 at titers comparable to those in human serum samples collected from individuals convalescing from COVID-19. These data support further development of LION/repRNA-CoV2S as a vaccine candidate for prophylactic protection against SARS-CoV-2 infection.
-
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date has relied heavily on reverse transcription polymerase chain reaction testing. However, limited test availability, high false-negative rates, and the existence of asymptomatic or subclinical infections have resulted in an undercounting of the true prevalence of SARS-CoV-2. Here, we show how influenza-like illness (ILI) outpatient surveillance data can be used to estimate the prevalence of SARS-CoV-2. ⋯ Combining excess ILI counts with the date of onset of community transmission in the United States, we also show that the early epidemic in the United States was unlikely to have been doubling slower than every 4 days. Together, these results suggest a conceptual model for the COVID-19 epidemic in the United States characterized by rapid spread across the United States with more than 80% infected individuals remaining undetected. We emphasize the importance of testing these findings with seroprevalence data and discuss the broader potential to use syndromic surveillance for early detection and understanding of emerging infectious diseases.
-
Strategies to split ventilators to support multiple patients requiring ventilatory support have been proposed and used in emergency cases in which shortages of ventilators cannot otherwise be remedied by production or procurement strategies. However, the current approaches to ventilator sharing lack the ability to individualize ventilation to each patient, measure pulmonary mechanics, and accommodate rebalancing of the airflow when one patient improves or deteriorates, posing safety concerns to patients. Potential cross-contamination, lack of alarms, insufficient monitoring, and inability to adapt to sudden changes in patient status have prevented widespread acceptance of ventilator sharing. ⋯ We demonstrate these capacities through validation using closed- and open-circuit ventilators on linear test lungs. We show that the iSAVE can temporarily ventilate two pigs on one ventilator as efficaciously as each pig on its own ventilator. By leveraging off-the-shelf medical components, the iSAVE could rapidly expand the ventilation capacity of health care facilities during emergency situations such as pandemics.
-
Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog β-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. ⋯ Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.