Wiley interdisciplinary reviews. Systems biology and medicine
-
Wiley Interdiscip Rev Syst Biol Med · Nov 2011
ReviewMechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies.
Hematopoiesis, the process by which all mature blood cells are generated from multipotent hematopoietic stem cells (HSCs), is a finely tuned balancing act in which HSCs must constantly decide between different cell fates: to proliferate, to self-renew or differentiate, to stay quiescent in the bone marrow niche or migrate to the periphery, to live or die. These fates are regulated by a complex interplay between cell-extrinsic cues and cell-intrinsic regulatory pathways whose function is to maintain a homeostatic balance between HSC self-renewal and life-long replenishment of lost blood cells. Improper regulation of these competing cellular programs can transform HSCs and progenitor cells into disease-initiating leukemic stem cells (LSCs). ⋯ In this review, we focus on recent developments in elucidating the regulatory networks governing normal HSC self-renewal programs and their implications for leukemic transformation. We describe the current technical and methodological limitations in isolating and characterizing HSCs and LSCs, and the emerging approaches that may afford a better understanding of the regulation of normal and leukemic hematopoiesis. Finally, we discuss how such basic mechanistic information may be of use for the design of novel therapies that will selectively reprogram and/or eliminate LSCs.
-
The functions of the gastrointestinal (GI) tract include digestion, absorption, excretion, and protection. In this review, we focus on the electrical activity of the stomach and small intestine, which underlies the motility of these organs, and where the most detailed systems descriptions and computational models have been based to date. Much of this discussion is also applicable to the rest of the GI tract. ⋯ A number of common and highly symptomatic GI conditions involve abnormal electrical and/or motor activity, which are often termed functional disorders. In the last section of this review we address approaches being used to characterize and diagnose abnormalities in the electrical activity and how these might be applied in the clinical setting. The understanding of electrophysiology and motility of the GI system remains a challenging field, and the review discusses how biophysically based mathematical models can help to bridge gaps in our current knowledge, through integration of otherwise separate concepts.