Journal of neurointerventional surgery
-
Multicenter Study
Multicenter clinical and imaging evaluation of targeted radiofrequency ablation (t-RFA) and cement augmentation of neoplastic vertebral lesions.
Treatment of spinal metastatic lesions by radiofrequency ablation (RFA) before cementation can potentially help in local tumor control and pain relief. This is often limited by access and tumor location. This study reports multicenter clinical and imaging outcomes following targeted RFA (t-RFA) and cement augmentation in neoplastic lesions of the spine. ⋯ t-RFA followed by vertebral augmentation in malignant vertebral lesions resulted in significant pain reduction and functional status improvement, with no major complications. t-RFA permitted access to vertebral lesions and real-time accurate monitoring of the ablation zone temperature. Post-procedure MRI and PET examinations correlated with a favorable tumor response and helped to monitor tumor growth and the timing of adjuvant therapy.
-
The hemodynamic evaluation of cerebral arteriovenous malformations (AVMs) using DSA has not been validated against true flow measurements. ⋯ A-Vt and iFlow transit times on DSA correlate with cerebral AVM flow measured using QMRA. Thus, these parameters may be used to indirectly estimate AVM flow before and after embolization during angiography in real time.
-
Despite significant advancements in the procedural efficacy of mechanical thrombectomy in patients with ischemic stroke in recent years, there still remains a portion of the population that does not achieve good recanalization. The reasons for this may be varied. We hypothesized that static friction between the clot and the vessel, or catheter wall might contribute to the difficulty in removing the clot. ⋯ The friction properties of clots were found to be related to the content ratio of fibrin to red blood cells. Future imaging techniques that could show fibrin and red blood cell content might help us to predict the 'stickiness' of a clot.
-
Advances in robotic medicine have been adopted by various surgical subspecialties as the benefits of this technology become more readily apparent: precision in narrow operative windows, tremor controlled movements, and modestly improved outcomes, among others. Vascular neurosurgery, in particular, remains open to newer and more cutting edge treatment options for complex pathologies, and robotics may be on the horizon for such advances. We seek to provide a broad overview of these innovations in vascular neurosurgery for both practitioners well acquainted with robotics and those seeking to become more familiar. ⋯ Additionally, robotic systems in the fields of interventional cardiology and radiology have potential applications to endovascular neurosurgery but require proper modifications to navigate complex intracerebral vasculature. Robotic technology is not without drawbacks, as broad implementation may lead to increased cost, training time, and potential delays in emergency situations. Further cultivation of current multidisciplinary technologies and investment into newer systems is necessary before robotics can make a sizable impact in clinical practice.
-
Subarachnoid hemorrhage (SAH) from posterior circulation perforator aneurysms (PCPAs) is rare and its natural history is unknown. Diagnosis may be difficult, acute management is poorly defined, and long-term recurrent SAH rates and clinical outcome data are lacking. ⋯ The rarity of PCPA has precluded long-term clinical follow-up until now. Our experience suggests low recurrent SAH rates. Until further studies are performed, conservative management, possibly combined with antifibrinolytic therapy, may be a viable treatment with acceptable long-term outcome.