Injury
-
The progress of fracture healing is directly related to an increasing stiffness and strength of the healing fracture. Similarly the weight bearing capacity of a bone directly relates to the mechanical stability of the fracture. Therefore, assessing the progress of fracture repair can be based on the measurement of the mechanical stability of the healing fracture. ⋯ At lower frequencies the perturbations are induced in the form of vibration and at higher frequencies in the form of ultrasonic waves. Both methods provide surrogates for the mechanical properties at the fracture site. Although biomechanical properties of a healing fracture provide a direct and clinically relevant measure for fracture healing, their application will in the near future be limited to clinical studies or research settings.
-
Fracture healing is a critically important clinical event for fracture patients and for clinicians who take care of them. The clinical evaluation of fracture healing is based on both radiographic findings and clinical findings. Risk factors for delayed union and nonunion include patient dependent factors such as advanced age, medical comorbidities, smoking, non-steroidal anti-inflammatory use, various genetic disorders, metabolic disease and nutritional deficiency. ⋯ Non-unions are difficult to treat and have a high financial impact. Indirect costs, such as productivity losses, are the key driver for the overall costs in fracture and non-union patients. Therefore, all strategies that help to reduce healing time with faster resumption of work and activities not only improve medical outcome for the patient, they also help reduce the financial burden in fracture and non-union patients.
-
Imaging of a healing fracture provides a non-invasive and often instructive reproduction of the fracture repair progress and the healing status of bone. However, the interpretation of this reproduction is often qualitative and provides only an indirect and surrogate measure of the mechanical stability of the healing fracture. Refinements of the available imaging techniques have been suggested to more accurately determine the healing status of bone. ⋯ Absorptiometric measures including dual X-ray absorptiometry and computed tomography provide quantitative information on the amount and the density of newly formed bone around the site of the fracture. To include the effect of spatial distribution of newly formed bone, finite element models of healing fracture can be employed to estimate its load bearing capacity. Ultrasound technology not only avoids radiation doses to the patients but also provides the ability to additionally measure vascularity in the surrounding soft tissue of the fracture and in the fracture itself.
-
MRI has been established as an essential tool for accurate diagnosis in patients with musculoskeletal trauma. Its major advantages include excellent soft tissue contrast, high spatial resolution and lack of ionizing radiation. Although plain radiographs remain the basic tool for diagnosis and treatment planning in bone fractures assisted by CT in pelvic, spine and large joints injuries, there are specific circumstances that require MRI. ⋯ Newer applications on quantitative rather than morphologic imaging, such as relaxometry and diffusion tensor imaging, may be of paramount importance in treatment planning in the near future. Software improvements reduce metal induced artefacts, allowing thus imaging of the postoperative patient with metallic implants. A tendency towards a structured reporting pattern and standardised medical communication needs to be further explored for the benefit of orthopaedic surgeons, radiologists and patients.