Chest
-
A 40-year-old South Asian woman was admitted in active labor at 38 weeks' gestation. She had an unremarkable medical history with routine prenatal care, negative HIV testing results, and an uneventful pregnancy. She received a Bacillus Calmette-Guérin vaccine during childhood and reportedly had a subsequent positive purified protein-derivative test result 1 year prior to conception. She never smoked and had seven normal term pregnancies.
-
Randomized Controlled Trial
The effect of omega-3 fatty acids on bronchial hyperresponsiveness, sputum eosinophilia and mast cell mediators in asthma.
Omega-3 fatty acid supplements have been reported to inhibit exercise-induced bronchoconstriction (EIB). It has not been determined whether omega-3 supplements inhibit airway sensitivity to inhaled mannitol, a test for bronchial hyperresponsiveness (BHR) and model for EIB in people with mild to moderate asthma. ⋯ Three weeks of omega-3 supplements does not improve BHR to mannitol, decrease sputum eosinophil counts, or inhibit urinary excretion of mast cell mediators in people with mild to moderate asthma, indicating that dietary omega-3 supplementation is not useful in the short-term treatment of asthma.
-
Rapid response teams (RRTs) can effectively foster discussions about appropriate goals of care and address other emergent palliative care needs of patients and families facing life-threatening illness on hospital wards. In this article, The Improving Palliative Care in the ICU (IPAL-ICU) Project brings together interdisciplinary expertise and existing data to address the following: special challenges for providing palliative care in the rapid response setting, knowledge and skills needed by RRTs for delivery of high-quality palliative care, and strategies for improving the integration of palliative care with rapid response critical care. ⋯ Strategies including specific clinician training and system initiatives are then recommended for RRT care improvement. We conclude by suggesting that as evaluation of their impact on other outcomes continues, performance by RRTs in meeting palliative care needs of patients and families should also be measured and improved.
-
Pulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure, resulting in a progressive functional decline despite current available therapeutic options. The fundamental pathogenetic mechanisms underlying this disorder include pulmonary vasoconstriction, in situ thrombosis, medial hypertrophy, and intimal proliferation, leading to occlusion of the small to mid-sized pulmonary arterioles and the formation of plexiform lesions. Several predisposing or promoting mechanisms that contribute to excessive pulmonary vascular remodeling in PAH have emerged, such as altered crosstalk between cells within the vascular wall, sustained inflammation and dysimmunity, inhibition of cell death, and excessive activation of signaling pathways, in addition to the impact of systemic hormones, local growth factors, cytokines, transcription factors, and germline mutations. ⋯ However, over the past decade, a better understanding of new key regulators of this irreversible pulmonary vascular remodeling has been obtained. This review examines the state-of-the-art potential new targets for innovative research in PAH, focusing on (1) the crosstalk between cells within the pulmonary vascular wall, with particular attention to the role played by dysfunctional endothelial cells; (2) aberrant inflammatory and immune responses; (3) the abnormal extracellular matrix function; and (4) altered BMPRII/KCNK3 signaling systems. A better understanding of novel pathways and therapeutic targets will help in the designing of new and more effective approaches for PAH treatment.
-
In the past, thoracic and cardiac imaging were two distinct specialties of radiology. The technical evolution, however, has changed their boundaries with an important impact on CT imaging practices and has opened the new era of "cardiothoracic" imaging, due to the strong anatomic, mechanical, physiologic, physiopathologic, and therapeutic cardiopulmonary correlations. ⋯ The advent of ECG gating and state-of-art CT scanner faster rotation speed, high spatial and temporal resolution, high-pitch mode, shorter acquisition time, and dedicated cardiac reconstruction algorithms has opened new possibilities for chest imaging, integrating cardiac morphologic and even functional information within a diagnostic chest CT scan. The aim of this review is to briefly show and summarize the concept of integrated cardiothoracic imaging, which redefines the boundaries of chest CT imaging, opening the door to a new radiologic specialty.