Chest
-
Since initial reports 40 years ago on pediatric OSA syndrome (OSAS) as a distinct and prevalent clinical entity, substantial advances have occurred in the delineation of diagnostic and treatment approaches. However, despite emerging and compelling evidence that OSAS increases the risk for cognitive, cardiovascular, and metabolic end-organ morbidities, routine assessment of such morbidities is seldom conducted in clinical practice. ⋯ To circumvent these obstacles, the search for biomarker signatures of pediatric OSA and its cognitive and cardiometabolic consequences was launched, and considerable progress has occurred since then. Here, we review the current evidence for the presence of morbidity-related biomarkers among children with OSAS, and explore future opportunities in this promising arena.
-
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are progressive and debilitating diseases characterized by gradual obstruction of the pulmonary vasculature, leading to elevated pulmonary artery pressure (PAP) and increased pulmonary vascular resistance (PVR). If untreated, they can result in death due to right-sided heart failure. ⋯ We describe in detail the role of the nitric oxide-sGC-cyclic guanosine monophosphate (cGMP) signaling pathway in the pathogenesis of PAH and CTEPH and the mode of action of riociguat. We also review the preclinical data associated with the development of riociguat, along with the efficacy and safety data of riociguat from initial clinical trials and pivotal phase III randomized clinical trials in PAH and CTEPH.
-
Asthma is a complex disease well-suited to metabolomic profiling, both for the development of novel biomarkers and for the improved understanding of pathophysiology. In this review, we summarize the 21 existing metabolomic studies of asthma in humans, all of which reported significant findings and concluded that individual metabolites and metabolomic profiles measured in exhaled breath condensate, urine, plasma, and serum could identify people with asthma and asthma phenotypes with high discriminatory ability. There was considerable consistency across the studies in terms of the reported biomarkers, regardless of biospecimen, profiling technology, and population age. ⋯ There were also a number of nonreplicated results; however, the literature is not yet sufficiently developed to determine whether these represent spurious findings or reflect the substantial heterogeneity and limited statistical power in the studies and their methods to date. This review highlights the need for additional asthma metabolomic studies to explore these issues, and, further, the need for standardized methods in the way these studies are conducted. We conclude by discussing the potential of translation of these metabolomic findings into clinically useful biomarkers and the crucial role that integrated omics is likely to play in this endeavor.