Physiological reviews
-
Physiological reviews · Jan 2007
ReviewThe NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. ⋯ NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
-
Physiological reviews · Jan 2006
ReviewRespiratory tract mucin genes and mucin glycoproteins in health and disease.
This review focuses on the role and regulation of mucin glycoproteins (mucins) in airway health and disease. Mucins are highly glycosylated macromolecules (> or =50% carbohydrate, wt/wt). MUC protein backbones are characterized by numerous tandem repeats that contain proline and are high in serine and/or threonine residues, the sites of O-glycosylation. ⋯ Information on regulation of mucin genes by inflammatory/immune response mediators is summarized in section iii. In section iv, deficiencies in understanding the functional roles of mucins at the molecular level are identified as areas for further investigations that will impact on airway health and disease. The underlying premise is that understanding the pathways and processes that lead to mucus overproduction in specific airway diseases will allow circumvention or amelioration of these processes.
-
Physiological reviews · Apr 2005
ReviewMolecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
Electroneutral cation-Cl(-) cotransporters compose a family of solute carriers in which cation (Na(+) or K(+)) movement through the plasma membrane is always accompanied by Cl(-) in a 1:1 stoichiometry. Seven well-characterized members include one gene encoding the thiazide-sensitive Na(+)-Cl(-) cotransporter, two genes encoding loop diuretic-sensitive Na(+)-K(+)-2Cl(-) cotransporters, and four genes encoding K(+)-Cl(-) cotransporters. These membrane proteins are involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl(-) concentration below or above its electrochemical potential equilibrium. ⋯ Some of these cotransporters serve as targets for loop diuretics and thiazide-type diuretics, which are among the most commonly prescribed drugs in the world, and inactivating mutations of three members of the family cause inherited diseases such as Bartter's, Gitelman's, and Anderman's diseases. Major advances have been made in the past decade as consequences of molecular identification of all members in this family. This work is a comprehensive review of the knowledge that has evolved in this area and includes molecular biology of each gene, functional properties of identified cotransporters, structure-function relationships, and physiological and pathophysiological roles of each cotransporter.
-
Physiological reviews · Jan 2005
ReviewInherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels.
Mutations in cardiac Na(+) and K(+) channels can disrupt the precise balance of ionic currents that underlies normal cardiac excitation and relaxation. Disruption of this equilibrium can result in arrhythmogenic phenotypes leading to syncope, seizures, and sudden cardiac death. ⋯ A number of these defects have been characterized experimentally with the aim of understanding mechanisms of mutation-induced arrhythmia. Improving understanding of abnormalities may provide a basis for the development of therapeutic approaches.
-
Physiological reviews · Oct 2002
ReviewBeyond neurons: evidence that immune and glial cells contribute to pathological pain states.
Chronic pain can occur after peripheral nerve injury, infection, or inflammation. Under such neuropathic pain conditions, sensory processing in the affected body region becomes grossly abnormal. Despite decades of research, currently available drugs largely fail to control such pain. ⋯ Of the variety of substances released by activated immune and glial cells, proinflammatory cytokines (tumor necrosis factor, interleukin-1, interleukin-6) appear to be of special importance in the creation of peripheral nerve and neuronal hyperexcitability. Although this review focuses on immune modulation of pain, the implications are pervasive. Indeed, all nerves and neurons regardless of modality or function are likely affected by immune and glial activation in the ways described for pain.