Stem cells translational medicine
-
Stem Cells Transl Med · Jul 2015
Study of Bone Marrow and Embryonic Stem Cell-Derived Human Mesenchymal Stem Cells for Treatment of Escherichia coli Endotoxin-Induced Acute Lung Injury in Mice.
: Mesenchymal stem cells (MSCs) can be derived from multiple tissue sources. However, the optimal source of MSCs for cell-based therapy for acute lung injury (ALI) is unclear. In the present experiments, we studied bone marrow (BM)-derived and embryonic stem cell-derived human MSC (ES-MSCs) as a therapeutic agent in Escherichia coli endotoxin-induced ALI in mice. We hypothesized that ES-MSCs would be more potent than BM-MSCs owing to its more primitive source of origin. ALI was induced by the intratracheal instillation of endotoxin at 4 mg/kg into 10-12-week-old C57BL/6 mice with or without BM-MSCs, ES-MSCs, or normal human lung fibroblasts as a cellular control. Compared with the endotoxin-injured mice at 48 hours, the administration of ES-MSCs provided results similar to those of BM-MSCs, significantly reducing the influx of white blood cells and neutrophils and decreasing the secretion of the inflammatory cytokines, macrophage inflammatory protein-2 and tumor necrosis factor-α, in the injured alveolus. BM-MSCs also reduced extravascular lung water, a measure of pulmonary edema, by 60% and the total protein levels, a measure of lung permeability, by 66%. However, surprisingly, ES-MSCs did not have these protective effects, which was partially explained by the increased secretion of matrix metallopeptidase 9 by ES-MSCs, an enzyme known to increase lung protein permeability. In conclusion, both BM-MSCs and ES-MSCs markedly decreased endotoxin-induced inflammation. However, ES-MSCs did not show any beneficial effect on reducing pulmonary edema and lung protein permeability compared with BM-MSCs, suggesting that not all MSCs behave in a similar fashion. Our results highlight the need perhaps for a disease-specific potency assay for MSCs. ⋯ To determine the optimal source of mesenchymal stem cells (MSCs) for cell-based therapy for acute lung injury, bone marrow (BM)- and embryonic stem cell-derived human MSC (ES-MSCs) were compared as therapeutic agents for Escherichia coli endotoxin-induced lung injury in mice. ES-MSCs behaved similarly to BM-MSCs by markedly decreasing the inflammatory response induced by endotoxin. However, unlike BM-MSCs, ES-MSCs provided no protective effects against increasing lung water and protein permeability, in part because of an increase in expression of matrix metallopeptidase 9 by ES-MSCs. In patients with acute respiratory distress syndrome, impaired alveolar fluid clearance (i.e., no resolution of pulmonary edema fluid) has been associated with higher mortality rates. Although ES-MSCs might ultimately be found to have properties superior to those of BM-MSCs, such as for immunomodulation, these results highlight the need for a disease-specific potency assay for stem cell-based therapy.
-
Stem Cells Transl Med · Jun 2015
Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells.
Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. ⋯ This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach.
-
Stem Cells Transl Med · Dec 2014
Review Historical ArticleConcise review: umbilical cord blood transplantation: past, present, and future.
Allogeneic hematopoietic stem cell transplantation is an important treatment option for fit patients with poor-risk hematological malignancies; nevertheless, the lack of available fully matched donors limits the extent of its use. Umbilical cord blood has emerged as an effective alternate source of hematopoietic stem cell support. Transplantation with cord blood allows for faster availability of frozen sample and avoids invasive procedures for donors. ⋯ In combination with improved conditioning regimens, double-unit cord transplantation has allowed for the treatment of larger children, as well as adult patients with hematological malignancies. Current excitement in the field revolves around the development of safer techniques to improve homing, engraftment, and immune reconstitution after cord blood transplantation. Here the authors review the past, present, and future of cord transplantation.
-
Stem Cells Transl Med · Oct 2014
Neural precursor cell transplantation enhances functional recovery and reduces astrogliosis in bilateral compressive/contusive cervical spinal cord injury.
Spinal cord injury has a significant societal and personal impact. Although the majority of injuries involve the cervical spinal cord, few studies of cell transplantation have used clinically relevant models of cervical spinal cord injury, limiting translation into clinical trials. Given this knowledge gap, we sought to examine the effects of neural stem/precursor cell (NPC) transplants in a rodent model of bilateral cervical contusion-compression spinal cord injury. ⋯ Astrogliosis and glial scar deposition, measured by GFAP-positive and chondroitin sulfate proteoglycan-positive volume, was significantly reduced. Forelimb grip strength, fine motor control during locomotion, and axonal conduction (by in vivo electrophysiology) was greater in cell-treated animals compared with vehicle controls. Transplantation of NPCs in the bilaterally injured cervical spinal cord results in significantly improved spinal cord tissue and forelimb function, warranting further study in preclinical cervical models to improve this treatment paradigm for clinical translation.
-
Stem Cells Transl Med · Sep 2014
Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds.
Effective skin regeneration therapies require a successful interface between progenitor cells and biocompatible delivery systems. We previously demonstrated the efficiency of a biomimetic pullulan-collagen hydrogel scaffold for improving bone marrow-derived mesenchymal stem cell survival within ischemic skin wounds by creating a "stem cell niche" that enhances regenerative cytokine secretion. Adipose-derived mesenchymal stem cells (ASCs) represent an even more appealing source of stem cells because of their abundance and accessibility, and in this study we explored the utility of ASCs for hydrogel-based therapies. ⋯ Moving in vivo, hydrogel delivery improved ASC survival, and application of both murine and human ASC-seeded hydrogels to splinted murine wounds resulted in accelerated wound closure and increased vascularity when compared with control wounds treated with unseeded hydrogels. In conclusion, capillary seeding of ASCs within a pullulan-collagen hydrogel bioscaffold provides a convenient and simple way to deliver therapeutic cells to wound environments. Moreover, ASC-seeded constructs display a significant potential to accelerate wound healing that can be easily translated to a clinical setting.