Stroke; a journal of cerebral circulation
-
Characterization of carotid plaque hemorrhage: a CT angiography and MR intraplaque hemorrhage study.
The main objective of this study was to evaluate CT angiographic (CTA) features that are able to predict the presence of intraplaque hemorrhage (IPH) as defined by MR-IPH. ⋯ CTA plaque ulceration, but not mean CTA plaque density, was useful for prediction of IPH as defined by the MR-IPH technique.
-
Recently, a genome-wide association study identified associations between single nucleotide polymorphisms on chromosome 9p21 and risk of harboring intracranial aneurysm (IA). Aneurysm characteristics or subphenotypes of IAs, such as history of subarachnoid hemorrhage, presence of multiple IAs and location of IAs, are clinically important. We investigated whether the association between 9p21 variation and risk of IA varied among these subphenotypes. ⋯ Our results suggest that genetic influence on formation may vary between IA subphenotypes.
-
Diffusion-weighted magnetic resonance imaging of the brain is a promising technique to help predict functional outcome in comatose survivors of cardiac arrest. We aimed to evaluate prospectively the temporal-spatial profile of brain apparent diffusion coefficient changes in comatose survivors during the first 8 days after cardiac arrest. ⋯ Brain diffusion-weighted imaging changes in comatose, postcardiac arrest survivors in the first week after the arrest are region and time dependent and differ between good- and poor-outcome patients. With increasing use of magnetic resonance imaging in this context, it is important to be aware of these relations.
-
Hemodynamic insult by bilateral common carotid artery ligation has been shown to induce aneurysmal remodeling at the basilar terminus in a rabbit model. To characterize critical hemodynamics that initiate this remodeling, we applied a novel hemodynamics-histology comapping technique. ⋯ Aneurysmal remodeling initiates when local hemodynamic forces exceed specific limits at the rabbit basilar terminus. A combination of high WSS and positive WSS gradient represents dangerous hemodynamics likely to induce aneurysmal remodeling.
-
Prenatal glucocorticoids prevent germinal matrix hemorrhage in premature infants. The underlying mechanism, however, is elusive. Germinal matrix is enriched with angiogenic vessels exhibiting paucity of pericytes and glial fibrillary acidic protein-positive astrocyte end feet. Therefore, we asked whether glucocorticoid treatment would suppress angiogenesis and enhance periendothelial coverage by pericytes and glial fibrillary acidic protein-positive end feet in the germinal matrix microvasculature. ⋯ Prenatal glucocorticoid suppresses vascular endothelial growth factor and elevates transforming growth factor-beta levels, which results in angiogenic inhibition, trimming of neovasculature, and enhanced pericyte coverage. These changes contribute to stabilizing the germinal matrix vasculature, thereby reducing its propensity to hemorrhage. Prenatal glucocorticoid exposure does not induce neural cell death in humans, unlike rabbits.