Stroke; a journal of cerebral circulation
-
Comparative Study
Comparison of the 2 Most Popular Deconvolution Techniques for the Detection of Penumbral Flow in Acute Stroke.
Dynamic susceptibility-weighted contrast-enhanced (DSC) magnetic resonance imaging (MRI) is used to identify the tissue-at-risk in acute stroke, but the choice of optimal DSC postprocessing in the clinical setting remains a matter of debate. Using 15O-water positron emission tomography (PET), we validated the performance of 2 common deconvolution methods for DSC-MRI. ⋯ Block-circulant single value decomposition seems only significantly beneficial for mean transit time maps in (sub)acute stroke. Tmax is likely the most stable deconvolved parameter for the detection of tissue-at-risk using DSC-MRI.
-
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. ⋯ n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival.
-
Emergency medical services routing of patients with acute stroke to designated centers may increase the proportion of patients receiving care at facilities meeting national standards and augment recruitment for prehospital stroke research. ⋯ URL: http://www.clinicaltrials.gov. Unique identifier: NCT00059332.