Stroke; a journal of cerebral circulation
-
Randomized Controlled Trial
Blood-brain barrier compromise does not predict perihematoma edema growth in intracerebral hemorrhage.
There are limited data on the extent of blood-brain barrier (BBB) compromise in acute intracerebral hemorrhage patients. We tested the hypotheses that BBB compromise measured with permeability-surface area product (PS) is increased in the perihematoma region and predicts perihematoma edema growth in acute intracerebral hemorrhage patients. ⋯ URL: http://www.clinicaltrials.gov. Unique identifier: NCT00963976.
-
Penumbral biomarkers promise to individualize treatment windows in acute ischemic stroke. We used a novel magnetic resonance imaging approach that measures oxygen metabolic index (OMI), a parameter closely related to positron emission tomography-derived cerebral metabolic rate of oxygen utilization (CMRO2), to derive a pair of ischemic thresholds: (1) an irreversible-injury threshold that differentiates ischemic core from penumbra and (2) a reversible-injury threshold that differentiates penumbra from tissue not-at-risk for infarction. ⋯ OMI thresholds, derived using voxel-based, reperfusion-dependent infarct probabilities, delineated the ischemic penumbra with high predictive ability. These thresholds will require confirmation in an independent patient sample.
-
The study aims to determine whether volume transfer constant (K(trans)) maps calculated from first-pass perfusion computed tomographic data are a biomarker of cerebral collateral circulation and predict the clinical outcome in acute ischemic stroke caused by proximal arterial occlusion. ⋯ K(trans) maps extracted from standard first-pass perfusion computed tomography are correlated with collateral circulation status after acute proximal arterial occlusion and predictive of outcome.
-
Motor recovery after stroke has been shown to be correlated with both the fractional anisotropy (FA) of the affected corticospinal tract (CST) and the interhemispheric resting-state functional connectivity (rsFC) of the primary motor cortex (M1). However, the role of the restoration or enhancement of the M1-M1 rsFC in motor recovery remains largely unknown. We aimed to clarify this issue by investigating the correlations between the M1-M1 rsFC and the integrity of the M1-M1 anatomic connection and the affected CST in chronic subcortical stroke patients with good motor outcomes. ⋯ Our findings suggest that the M1-M1 anatomic connection impairment is secondary to CST damage, and the M1-M1 rsFC enhancement may reflect compensatory or reactive neural plasticity in stroke patients with CST impairment.