Neuropharmacology
-
Comparative Study
Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease.
Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. ⋯ The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured.
-
This study investigated whether the spinal or systemic treatment with the lipid resolution mediators resolvin D1 (RvD1), aspirin-triggered resolvin D1 (AT-RvD1) and resolvin D2 (RvD2) might interfere with behavioral and neurochemical changes in the mouse fibromyalgia-like model induced by reserpine. Acute administration of AT-RvD1 and RvD2 produced a significant inhibition of mechanical allodynia and thermal sensitization in reserpine-treated mice, whereas RvD1 was devoid of effects. A similar antinociceptive effect was obtained by acutely treating animals with the reference drug pregabalin. ⋯ Otherwise, AT-RvD1 led to a recovery of dopamine levels in cortex, and 5-HT in thalamus, whilst it diminished brain glutamate contents. Concerning pregabalin, this drug prevented dopamine reduction in total brain, and inhibited glutamate increase in brain and spinal cord of reserpine-treated animals. Our data provide novel evidence, showing the ability of D-series resolvins AT-RvD1, and mainly RvD2, in reducing painful and depressive symptoms allied to fibromyalgia in mice.