Neuropharmacology
-
Randomized Controlled Trial
Morphine modifies the cingulate-operculum network underlying painful rectal evoked potentials.
The effect of opioids on brain networks underlying rectal evoked potentials (EPs) has never been investigated. This study utilized brain source connectivity to explore whether morphine induced changes in brain networks underlying painful rectal EPs would reflect changes in pain scores due to morphine. Twenty healthy volunteers were included in this placebo-controlled cross-over study. ⋯ A dominating cingulate-operculum network to rectal pain was seen. Cingulate source shifted anteriorly in the morphine arm (P < 0.001) and this shift was positively correlated to the change in the pain score (r = 0.6, P < 0.05). These findings indicate that visceral pain relief due to morphine is associated with reorganization within cingulate cortex, which may be used as a biomarker of opioid effects.
-
Exercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.) and central (i.t., i.c.v.) pretreatment with CB₁ and CB₂ cannabinoid receptor antagonists (AM251 and AM630) blocked the antinociception induced by an aerobic exercise (AE) protocol in both mechanical and thermal nociceptive tests. Western blot analysis revealed an increase and activation of CB₁ receptors in the rat brain, and immunofluorescence analysis demonstrated an increase of activation and expression of CB₁ receptors in neurons of the periaqueductal gray matter (PAG) after exercise. ⋯ These results indicate that exercise could activate the endocannabinoid system, producing antinociception. Supporting this hypothesis, liquid-chromatography/mass-spectrometry measurements demonstrated that plasma levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and of anandamide-related mediators (palmitoylethanolamide and oleoylethanolamide) were increased after AE. Therefore, these results suggest that the endocannabinoid system mediates aerobic exercise-induced antinociception at peripheral and central levels.
-
The α2 adrenoceptor is highly enriched in spinal dorsal horn and involved in descending noradrenergic pain modification. Following peripheral tissue injury, intrathecal application of α2 adrenoceptor agonists effectively alleviates the pathological pain hypersensitivity, although the precise mechanisms are not fully understood. The present study induced inflammatory pain by intraplantar injection of Complete Freund's Adjuvant (CFA), and prepared the spinal cord slices to assay the possible influence of α2 adrenoceptor agonist clonidine on the synaptic transmission mediated by NMDA receptor (NMDAR), a critical player in spinal sensitization. ⋯ Biochemical analysis in vivo revealed that intrathecal clonidine administration specifically decreased the content of GluN2B subunit-containing NMDAR at synaptosomal membrane fraction, a result associated closely with the alleviation of inflammatory pain. Electrophysiological recordings in vitro further demonstrated that GluN2B receptor-selective inhibitor ifenprodil dramatically reduced NMDAR synaptic responses in inflamed mice and more importantly, occluded the synaptic inhibition produced by clonidine. These data suggested that the noradrenergic suppression of inflammatory pain might involve the blockade of GluN2B receptor-mediated nociceptive transmission in spinal dorsal horn.
-
N-benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HT(2A) receptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT(2A) receptor activation in rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. ⋯ These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HT(2A) receptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous in vitro findings that N-benzyl substitution increases 5-HT(2A) affinity. Given the high potency and ease of synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will become more widespread in the future.
-
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. ⋯ Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.