Neuropharmacology
-
N-benzyl substitution markedly enhances the affinity of phenethylamine hallucinogens at the 5-HT(2A) receptor. N-benzyl substituted derivatives of 2,5-dimethoxy-4-iodophenethylamine (2C-I), such as N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBOMe) and N-(2,3-methylenedioxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (25I-NBMD), have appeared recently as designer drugs, but have not been characterized behaviorally. The head twitch response (HTR) is induced by 5-HT(2A) receptor activation in rats and mice, and is widely used as a behavioral proxy for hallucinogen effects in humans. ⋯ These findings show that phenethylamine hallucinogens induce the HTR by activating 5-HT(2A) receptors. Our results demonstrate that 25I-NBOMe is a highly potent derivative of 2C-I, confirming previous in vitro findings that N-benzyl substitution increases 5-HT(2A) affinity. Given the high potency and ease of synthesis of N-benzylphenethylamines, it is likely that the recreational use of these hallucinogens will become more widespread in the future.
-
Randomized Controlled Trial
Morphine modifies the cingulate-operculum network underlying painful rectal evoked potentials.
The effect of opioids on brain networks underlying rectal evoked potentials (EPs) has never been investigated. This study utilized brain source connectivity to explore whether morphine induced changes in brain networks underlying painful rectal EPs would reflect changes in pain scores due to morphine. Twenty healthy volunteers were included in this placebo-controlled cross-over study. ⋯ A dominating cingulate-operculum network to rectal pain was seen. Cingulate source shifted anteriorly in the morphine arm (P < 0.001) and this shift was positively correlated to the change in the pain score (r = 0.6, P < 0.05). These findings indicate that visceral pain relief due to morphine is associated with reorganization within cingulate cortex, which may be used as a biomarker of opioid effects.
-
mGlu7 receptors are coupled to Gi/Go-proteins and activate multiple transduction pathways, including inhibition of adenylyl cyclase activity and stimulation of ERK1/2 and JNK pathways. mGlu7 receptors play an important role in cognition and emotion and are involved in stress-related disorders such as anxiety and depression and in susceptibility to convulsive seizures. In spite of these potential clinical implications, little is known on the mechanisms that regulate mGlu7-receptor signaling. Here we show that mGlu7 receptor-dependent signaling pathways were regulated in a complementary manner by different GRK subtypes, with GRK4 affecting the adenylyl cyclase and the JNK pathways, and GRK2 selectively affecting the ERK1/2 pathway. ⋯ Finally we found that β-arrestin1 amplified mGlu7 receptor-dependent ERK1/2 activation in response to L-AP4 (an orthosteric agonist), but not in response to AMN082 (an atypical mGlu7-receptor allosteric agonist). The different effect of β-arrestin1 on L-AP4- and AMN082-stimulated ERK1/2 phosphorylation is in line with the emerging concept of β-arrestin-biased agonists. The present study may open new perspectives in elucidating the physio-pathological roles of the mGlu7 receptor and may provide new insights for the possibility to develop specific (biased) agonists that can selectively activate different signaling pathways.
-
The present study aimed at evaluating the effect of opicapone, a third generation nitrocatechol catechol-O-methyltransferase (COMT) inhibitor, on the systemic and central bioavailability of 3,4-dihydroxy-l-phenylalanine (levodopa) and related metabolites in the cynomolgus monkey. ⋯ Opicapone behaved as long-acting COMT inhibitor that markedly increased systemic and central levodopa bioavailability. Opicapone is a strong candidate to fill the unmet need for COMT inhibitors that lead to more sustained levodopa levels in Parkinson's disease patients.
-
Aberrant CDK5 activity is implicated in a number of neurodegenerative disorders. Isoflurane exposure leads to neuronal apoptosis, and subsequent learning and memory defects in the developing brain. The present study was designed to examine whether and how CDK5 activity plays a role in developmental isoflurane neurotoxicity. ⋯ Moreover, Roscovitine remarkably alleviated the learning and memory deficits induced by postnatal isoflurane exposure. These results indicated that aberrant CDK5 activity-dependent MEF2 phosphorylation mediates developmental isoflurane neurotoxicity. Inhibition of CDK5 overactivation contributes to the relief of isoflurane neurotoxicity in the developing brain.