Neuropharmacology
-
Facilitation of serotonin 2C- and 1A-receptor (5-HT2C-R and 5-HT1A-R) mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) has been associated with anxiogenic and anxiolytic effects, respectively. It has been also shown that stimulation of BLA 5-HT2C-Rs underlies the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine or fluoxetine. Here we investigated whether chronic treatment with these two antidepressants, which causes anxiolytic effects, decreases the responsiveness of these receptors in the BLA. ⋯ Acute administration of imipramine (5 mg/kg) failed to interfere with MK-212 effects in both tests. Intra-BLA injection of the 5-HT1A antagonist WAY-100635 blocked the anxiolytic, but not the panicolytic, effect of imipramine in the tests used. Our findings indicate that both a reduction in 5-HT2C-R- and a facilitation of 5-HT1A-R-mediated neurotransmission in the BLA are involved in the anxiolytic effect of antidepressant drugs.
-
The 5-HT(4) receptor agonist tegaserod (TEG) has been reported to modulate visceral pain. However, the underlying mechanism remains unknown. The objective of the present study was to examine the analgesic mechanism and site of action of TEG. ⋯ While TEG had no effect on the responses of CRD-sensitive PNA, it inhibited the responses of CRD-sensitive LS neurons in spinal intact condition. This inhibition was blocked by GR113808, NLX and β-funaltrexamine (β-FNA) when injected into the RVM. Results indicate that TEG produces analgesia via activation of supraspinal 5-HT(4) receptors which triggers the release of opioids at supraspinal site, which activates descending noradrenergic pathways to the spinal cord to produce analgesia.
-
Although previous reports have suggested that P2Y1 receptors (P2Y1Rs) are involved in cutaneous nociceptive signaling, it remains unclear how P2Y1Rs contribute to peripheral sensitization. The current study was designed to delineate the role of peripheral P2Y1Rs in pain and to investigate potential linkages to mitogen-activated protein kinase (MAPK) in DRGs and Transient Receptor Potential Vanilloid 1 (TRPV1) expression in a rodent inflammatory pain model. Following injection of 2% carrageenan into the hind paw, expressions of P2Y1 and TRPV1 and the phosphorylation rates of both p38 MAPK and ERK but not JNK were increased and peaked at day 2 post-injection. ⋯ Furthermore, inhibition of p38 activation in the DRGs by SB203580 (a p38 inhibitor, i.t, D0 to D2) prevented the upregulation of TRPV1 and a single i.t injection of SB203580 reversed the established thermal hyperalgesia, but not mechanical allodynia. Lastly, to identify the mechanism of action of P2Y1Rs, we repeatedly injected the P2Y1 agonist, MRS2365 into the naïve rat's hind paw and observed a dose-dependent increase in TRPV1 expression and p38 MAPK phosphorylation. These data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2Y1Rs activation modulates p38 MAPK signaling and TRPV1 expression, which ultimately leads to the induction of thermal hyperalgesia.
-
The need for immunosuppression after allo/xenogenic mesenchymal stromal cell (MSC) transplantation is debated. This study compared the long-term effects of human (h) bone marrow MSC transplant in immunocompetent or immunosuppressed traumatic brain injured (TBI) mice. C57Bl/6 male mice were subjected to TBI or sham surgery followed 24 h later by an intracerebroventricular infusion of phosphate buffer saline (PBS, control) or hMSC (150,000/5 μl). ⋯ Five weeks after TBI, hMSC had comparable efficacy, with functional recovery (on both sensorimotor and cognitive deficits) and structural protection (contusion volume, vessel rescue effect, gliotic scar reduction, induction of neurogenesis) in immunosuppressed and immunocompetent mice. Therefore, long-term hMSC efficacy in TBI is not dependent on immunosuppressive treatment. These findings could have important clinical implication since immunosuppression in acute TBI patients may increase their risk of infection and not be tolerated.
-
Clinically, it is suggested that chronic pain might induce mood disorders like depression and anxiety. Based on this antidepressant drugs have emerged as a new therapy for pain. In this study, the effect of acute and subchronic treatments with 3-(4-fluorophenylselenyl)-2,5-diphenylselenophene (F-DPS) on behavioral changes induced by partial sciatic nerve ligation (PSNL) was evaluated. ⋯ Subchronic treatment with F-DPS (0.1 mg/kg, i.g.) reversed depression-like behavior of sciatic nerve-ligated mice in the TST and FST and produced a significant anxiolytic-like action in both sham-operated and PSNL animals. Although the acute F-DPS treatment did not produce anti-allodynic effect, F-DPS subchronic treatment significantly reduced pain sensitivity in PSNL mice. These findings demonstrated that F-DPS blocked behavioral changes induced by neuropathic pain, suggesting that it might be attractive in the pharmacological approach of pain-emotion diseases.