Neuropharmacology
-
Simvastatin (SV) is reported to improve cognition and slow progression of Alzheimer's disease (AD), however underlying mechanism still remains unclear. In hippocampal dentate gyrus (DG), β-amyloid (Aβ) selectively impairs survival and neurite growth of newborn neurons in the 2(nd) week after birth. The aim of this study was to examine the effects of SV on the impairment of neurogenesis and the spatial cognitive deficits in Aβ25-35 (3 nmol)-injected (i.c.v.) mice (Aβ25-35-mice). ⋯ The SV-treatment could correct the decline of hippocampal BDNF concentration in Aβ25-35-mice, which was blocked by MLA and FOH. Using Morris water maze and Y-maze tasks, we further observed that the SV-treatment in Aβ25-35-mice could improve their spatial cognitive deficits, which was sensitive to the application of FOH. The results indicate that the SV-treatment in Aβ25-35-mice via reduction of FPP can protect neurogenesis through α7nAChR-cascading PI3K-Akt and increasing BDNF, which may improve spatial cognitive function.
-
Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). In particular NPS evokes robust anxiolytic-like effects in rodents together with a stimulant and arousal promoting action. The aim of the study was to investigate the effects of NPS on the aggressiveness of mice subjected to the resident/intruder test. ⋯ Moreover, NPSR(-/-) mice displayed a significantly higher time spent attacking than NPSR(+/+) mice. [(t)Bu-D-Gly(5)]NPS (10 nmol, icv) did not change the behavior of mice in the resident/intruder test but completely counteracted NPS effects. SHA 68 (50 mg/kg, ip) was inactive per se and against NPS. In conclusion, this study demonstrated that NPS produces anti-aggressive effects in mice through the selective activation of NPSR and that the endogenous NPS/NPSR system can exert a role in the control of aggressiveness levels under the present experimental conditions.