Neuropharmacology
-
Comparative Study
Attenuation of persistent pain-related behavior by fatty acid amide hydrolase (FAAH) inhibitors in a rat model of HIV sensory neuropathy.
Distal sensory neuropathies are a hallmark of HIV infections and can result in persistent and disabling pain despite advances in antiretroviral therapies. HIV-sensory neuropathic (HIV-SN) pain may be amenable to cannabinoid treatment, but currently available agonist treatments are limited by untoward side effects and potential for abuse in this patient population. Fatty acid amide hydrolase (FAAH) inhibitors may offer an alternative approach by inhibiting the degradation of endocannabinoids with purportedly fewer untoward CNS side effects. ⋯ To assess the contribution of cannabinoid receptors in these antinociceptive effects, CB1 antagonist AM251 or CB2 antagonist SR144528 were tested in conjunction with FAAH inhibitors. Results suggested a contribution of both CB1- and CB2-mediated effects, particularly in reducing tactile allodynia. In summary, these findings support inhibition of endocannabinoid degradation as a promising target for management of disabling persistent HIV-SN pain syndromes.
-
Nicotinic receptors in the central nervous system (nAChRs) are known to play important roles in pain processing and modulate behavioral responses to analgesic drugs, including nicotine. The presence of the α5-neuronal nicotinic accessory subunit in the nicotinic receptor complex is increasingly understood to modulate reward and aversive states, addiction, and possibly pathological pain. In the current study, using α5-knockout (KO) mice and subunit-specific antibodies, we assess the role of α5-containing neuronal nicotinic receptors in neuropathic pain and in the analgesic response to nicotine. ⋯ Nevertheless, thermal analgesic response to nicotine was marginally reduced in CCI α5-KO mice at 4 days after CCI, but not at later timepoints or after PSNL. Interestingly, upon daily intermittent nicotine injections in unoperated mice, WT animals developed tolerance to nicotine-induced analgesia to a larger extent than α5-KO mice. Our results suggest that α5-containing nAChRs mediate analgesic tolerance to nicotine but do not play a major role in neuropathic pain.
-
Hyperpolarizing synaptic inhibition through GABAA and glycine receptors depends on the presence of the neuronal cation-chloride-cotransporter protein, KCC2. Several transcriptional and post-transcriptional mechanisms have been shown to regulate KCC2 and thereby influence the polarity and efficacy of inhibitory synaptic transmission. It is unclear however whether regulation of KCC2 enables the transporter to attain different levels of activity thus allowing a neuron to modulate the strength of inhibitory synaptic transmission to its changing requirements. ⋯ Our results demonstrate that KCC2 transport can vary considerably in magnitude depending on the combination of alanine mutations present on the protein. Transport can be enhanced to sufficiently high levels that hyperpolarizing GABAA responses may be obtained even in neurons with an extremely negative resting membrane potential and at high extracellular K(+) concentrations. Our findings highlight the significant potential for regulating the inhibitory tone by KCC2-mediated chloride extrusion and suggest that cellular signaling pathways may act combinatorially to alter KCC2 phosphorylation/dephosphorylation and thereby tune the strength of synaptic inhibition.
-
Morphine excites dopamine (DA) neurons in the ventral tegmental area (VTA), an effect mediated by both local and systemic mechanisms. While the importance of the prefrontal cortex (PFC) - VTA circuit in opiate addiction is well established, little is known about how the PFC regulates the activity of VTA DA neurons upon morphine stimulation. One major challenge is that VTA DA neurons are highly heterogeneous in terms of projection and regulation, making their responses to PFC manipulations variable. ⋯ Using in vivo microdialysis, we find that inactivation of the PFC also reduces the morphine-induced elevation of DA levels in the nucleus accumbens (NAc). Furthermore, 24 h after only single morphine exposure, PFC-inactivation failed to prevent subsequent morphine challenge from exciting VTA DA neurons, which is paralleled by altered response of PFC pyramidal neurons to morphine stimulation. Our results indicate that the PFC gates acute morphine action on a subset of VTA DA neurons, which is highly plastic and can be functionally remodeled by morphine exposure.
-
JWH-018 is a synthetic CB1 and CB2 agonist illegally marketed as products named "Spice" or "herbal blend" for its psychoactive effects which are much higher than those produced by cannabis. In the last year, the European Monitoring Centre for Drugs and Drug Addiction reported to the Italian National Early Warning System the seizure of plant material containing new halogenated derivatives of JWH-018 (JWH-018 Cl and JWH-018 Br). The present study aimed to investigate the in vitro and in vivo activity of these two new synthetic cannabinoids in mice. ⋯ Behavioral and neurological changes were prevented by the selective CB1 receptor antagonist AM 251. These data demonstrate for the first time that JWH-018 Cl and JWH-018 Br act similarly to JWH-018 while inducing less convulsive episodes and myoclonias. These data support the hypothesis that the halogenated compounds may have been introduced onto market to produce similar intoxicating effects as JWH-018 while causing less side effects.