Neuropharmacology
-
Loreclezole, an anticonvulsant and antiepileptic compound, potentiates gamma-aminobutyric acid (GABA) type A receptor function, by interacting with a specific allosteric modulatory site on receptor beta-subunits. A similar selectivity for GABAA receptor beta-subunits is apparent for the direct activation of receptor-operated Cl- channels, by the general anesthetics propofol and pentobarbital. The ability of loreclezole to activate GABAA receptors directly has now been compared, biochemically and electrophysiologically, with that of propofol. ⋯ Currents induced by loreclezole, like those evoked by propofol, were potentiated by diazepam in a flumazenil-sensitive manner and blocked by either bicuculline or picrotoxin. These data suggest that loreclezole shares, with propofol, an agonistic action at GABAA receptors containing the beta 2-subunit and that the different efficacies of the two compounds in this regard, may underlie the difference in their pharmacological profiles. The failure of loreclezole to activate GABAA receptors containing the beta 1-subunit may be responsible for its lack of hypnotic effect.
-
The recent development of peptide antagonists that selectively block subtypes of neuronal calcium channel has provided tools to study the role of presynaptic calcium channels in triggering exocytosis. A variety of methods have consistently demonstrated that multiple channel types participate in exocytosis. We have studied the subsecond kinetics of [3H]glutamate release from rat cortical synaptosomes as an assay for presynaptic calcium channel activity. ⋯ These results suggest that the N type channel in nerve terminals is distinct from that found in hippocampal somata, since it appears to be resistant to by omega-conotoxin MVIIC. The combination of omega-conotoxin GVIA (100 nM) and either omega-agatoxin IVA or omega-conotoxin MVIIC (1 microM each) blocked approx 90% of release when the Ca2+ concentration was reduced (0.46 mM or less), but 30-40% of release remained when the concentration of Ca2+ in the stimulus buffer was 1 mM or greater, indicating that a resistant channel type(s) also participates in exocytosis. Specific inhibitors of this resistant phenotype will be useful for further refinement of our understanding of the role of presynaptic calcium channels in mediating neurosecretion.
-
We investigated the effects of opioid agonists on the capsaicin-evoked release of glutamate from nociceptive primary afferent fibers of the rat (6-8 weeks) using a fluorometric on-line continuous monitoring system for glutamate. In the presence of 0.3 microM tetrodotoxin, the application of 3 microM capsaicin to spinal dorsal horn slices produced an evoked glutamate release (55.9 +/- 4.02 pmol.mg-1 protein, n = 15). DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin; 0.3-10 microM) and morphine (1-30 microM), mu-opioid agonists, produced a concentration-dependent reduction (approximately 85 and approximately 77% reduction, respectively) in the capsaicin (3 microM)-evoked release of glutamate. ⋯ Naltrindole (1 microM), a selective delta-antagonist, significantly antagonized the inhibitory effect of DPDPE (10 microM). In contrast, neither U-50,488H (1-10 microM) nor U-69,593 (10 microM), kappa-opioid agonists, had any effects on the evoked release of glutamate. These results suggest that mu-, and delta-opioid agonists modulate pain transmission in the spinal dorsal horn, at least in part, by inhibiting the release of glutamate from capsaicin-sensitive primary afferents.
-
Recent studies have suggested that glia might play a more active role in synaptic function than previously thought. Therefore, the present studies have evaluated the potential role of spinal cord glia in acute nociceptive processing and in the thermal and mechanical hyperalgesia produced by peripheral injury. In the present experiments, we found that: (1) selective inhibition of glia metabolism with intrathecal (i.t.) administration of fluorocitrate (1 nmol) results in a marked, but reversible, attenuation of the persistent thermal and mechanical hyperalgesia produced by intraplantar zymosan (5 mg); (2) selective inhibition of the inducible form of nitric oxide synthase (iNOS) with i.t. aminoguanidine (1 pmol-1 nmol) resulted in a dose-dependent inhibition of the persistent thermal, but not mechanical hyperalgesia produced by intraplantar zymosan (5 mg); (3) i.t. coadministration of interleukin 1 beta (IL1 beta; 10 ng) and interferon gamma (IFN; 1000 U) resulted in expression of the message for iNOS 8 hr after administration assessed using reverse-transcription polymerase chain reaction (RT-PCR) and Southern blot analysis; and (4) i.t. administration of lipopolysaccharide (LPS; 150 micrograms) produced a time-dependent thermal hyperalgesia compared with saline treated-rats (15 microliters). ⋯ We have previously shown that NO plays a significant role in mechanisms of hyperalgesia. In the present experiments we have extended these observations and have now shown a role for iNOS, expressed by glia, in mechanisms of hyperalgesia. These results suggest an unexplored avenue for the development of potential new and novel therapies for pain control.
-
Carbachol was injected into the hypothalamic paraventricular nuclei (PVN) of conscious, unrestrained Long Evans rats, chronically instrumented with intravascular catheters and pulsed Doppler probes to assess changes in regional haemodynamics. Bilateral microinjections of carbachol (1 ng-1 microgram) produced increases in blood pressure, bradycardias and vasoconstrictions in renal, superior mesenteric and hindquarters vascular beds. In the presence of phentolamine, the bradycardic and hindquarters vasoconstrictor responses to carbachol were unchanged while the pressor response was smaller due to a reduction in the renal and the superior mesenteric vasoconstriction. ⋯ These results indicate an important involvement of vasopressin in the cardiovascular responses to carbachol injected into the PVN of untreated animals. Moreover, in the presence of the vasopressin antagonist the hindquarters vascular bed showed a vasodilatation following PVN injection of carbachol; this effect was reversed to a vasoconstriction following combined i.v. pretreatment with the vasopressin antagonist, phentolamine and propranolol and hence was possibly due to circulating adrenaline acting on vasodilator beta 2-adrenoceptors. However, there was a residual hindquarters vasoconstriction raising the possibility that non-adrenergic, non-vasopressinergic vasoconstrictor mechanisms were influencing that vascular bed.