Neuropharmacology
-
Remifentanil is a powerful mu-opioid (MOP) receptor agonist used in anaesthesia with a very short half-life. However, per-operative perfusion of remifentanil was shown to increase morphine consumption during post-operative period to relieve pain. In the present study, we aimed to describe the cellular mechanisms responsible for this apparent reduction of morphine efficacy. ⋯ While both opioid agonists promoted Ser(375) phosphorylation on MOP receptor, remifentanil induced a rapid internalization of opioid receptors compared to morphine but without detectable arrestin 3-CFP translocation to the plasma membrane in our experimental conditions. Lastly, a cross-tolerance between remifentanil and morphine was observed in mice using the hot plate test. Our in vitro and in vivo data thus demonstrated that remifentanil produced a rapid desensitization and internalization of the MOP receptor that would reduce the anti-nociceptive effects of morphine.
-
Telmisartan (TEL), an angiotensin type 1 receptor (AT1R) antagonist, has been reported to exert neuroprotective effect in animal models of Parkinson's disease (PD). However, its effect on motor functions, mutant protein α-synuclein (SYN) and neurotrophic factors (BDNF and GDNF) expression and their interrelation in PD has not yet been elucidated. In the present study, the effect of TEL on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced motor dysfunctions and dopaminergic degeneration was ascertained through investigating the alterations in protein expression of dopamine transporter (DAT), tyrosine hydroxylase (TH) and SYN in C57BL/6J mouse. ⋯ TEL caused down-regulation of SYN, GFAP and up-regulation of DAT, TH, VAMT2, BDNF and GDNF expressions. Present data suggest that brain renin angiotensin system (RAS) plays a crucial role in motor function and in the regulation of key proteins such as SYN, BDNF and GDNF, DAT, TH, VMAT2 and GFAP in Parkinsonism. In conclusion, the present study shows that angiotensin type 1 receptor antagonists can ameliorate motor dysfunction and act as potential neuroprotective agent in the management of Parkinsonism.
-
The objective of this study was to determine the neuroprotective role of tropisetron on retinal ganglion cells (RGCs) as well as to explore the possible mechanisms associated with alpha7 nAChR-induced neuroprotection. Adult pig RGCs were isolated from all other retinal tissue using a two-step panning technique. Once isolated, RGCs were cultured for 3 days under control untreated conditions, in the presence of 500 μM glutamate to induce excitotoxicity, and when tropisetron was applied before glutamate to induce neuroprotection. 500 μM glutamate decreased RGC survival by an average of 62% compared to control conditions. ⋯ Another mechanism shown to be associated with neuroprotection involves internalization of NMDA receptors. Double-labeled immunocytochemistry and electrophysiology studies provided further evidence that tropisetron caused internalization of NMDA receptor subunits. The findings of this study suggest that tropisetron could be an effective therapeutic agent for the treatment of degenerative disorders of the central nervous system that involves excitotoxicity.
-
Tapentadol is a novel centrally acting drug that combines mu-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI), producing analgesic effects in various painful conditions. We investigated the acute effects of tapentadol in the locus coeruleus (LC), a central nucleus regulated by the noradrenergic and opioid systems that is critical in pain modulation. In single-unit extracellular recordings of LC neurons from anaesthetized male Sprague-Dawley rats, tapentadol clearly inhibited the spontaneous electrophysiological activity of LC neurons in a dose-dependent manner (ED50 = 0.8 mg/kg). ⋯ Furthermore, tapentadol inhibited the LC response to mechanical stimulation of the hindpaw in a dose-dependent manner. In summary, we demonstrate that acute administration of tapentadol inhibits LC neurons in vivo, mainly due to the activation of alpha2-adrenoceptors. These data suggest that both the noradrenergic and opioid systems participate in the inhibitory effect of tapentadol on LC neurons, albeit to different extents, which may account for its potent analgesic effect and mild opioidergic side-effects.
-
The exacerbation of musculoskeletal pain by stress in humans is modeled by the musculoskeletal hyperalgesia in rodents following a forced swim. We hypothesized that stress-sensitive corticotropin releasing factor (CRF) receptors and transient receptor vanilloid 1 (TRPV1) receptors are responsible for the swim stress-induced musculoskeletal hyperalgesia. We confirmed that a cold swim (26 °C) caused a transient, morphine-sensitive decrease in grip force responses reflecting musculoskeletal hyperalgesia in mice. ⋯ Desensitizing the TRPV1 receptor centrally or peripherally using desensitizing doses of resiniferatoxin (RTX) failed to prevent the musculoskeletal hyperalgesia produced by cold swim. SB-366791, a TRPV1 antagonist, also failed to influence swim-induced hyperalgesia. Together these data indicate that swim stress-induced musculoskeletal hyperalgesia is mediated, in part, by CRF2 receptors but is independent of the TRPV1 receptor.