Neuropharmacology
-
Diminished GABAergic and glycinergic inhibition in the spinal dorsal horn contributes significantly to chronic pain of different origins. Accordingly, pharmacological facilitation of GABAergic inhibition by spinal benzodiazepines (BDZs) has been shown to reverse pathological pain in animals as well as in human patients. Previous studies in GABA(A) receptor point-mutated mice have demonstrated that the spinal anti-hyperalgesic effect of classical BDZs is mainly mediated by GABA(A) receptors containing the α2 subunit (α2-GABA(A) receptors), while α1-GABA(A) receptors, which mediate the sedative effects, do not contribute. ⋯ When non-sedative doses of HZ166 and gabapentin, a drug widely used in the clinical management of neuropathic pain, were compared, the efficacies of both drugs against CCI-induced pain were similar. At doses producing already maximal antihyperalgesia, HZ166 was devoid of sedation and motor impairment, and showed no loss of analgesic activity during a 9-day chronic treatment period (i.e. no tolerance development). These findings provide further evidence that compounds selective for α2- and α3-GABA(A) receptors might constitute a novel class of analgesics suitable for the treatment of chronic pain.
-
Peripheral ischemia is commonly associated with an increase in tissue ATP concentration and a decrease in tissue pH. Although in vitro data suggest that low tissue pH can affect ATP-binding affinities to P2 receptors, the mechanistic relationship between ATP and low pH on peripheral nociception has not been fully examined. This study was designed to investigate the potential role of an acidified environment on intraplantar αβmeATP-induced peripheral pain responses in rats. ⋯ Moreover, amiloride injection significantly reduced low pH-induced facilitation of αβmeATP-mediated MA, but not TH. These results demonstrate that low tissue pH facilitates ATP-mediated MA via the activation of P2X receptors and ASICs, whereas TH induced by ATP under low pH conditions is mediated by the P2Y1 receptor and TRPV1, but not ASIC. Thus distinct mechanisms are responsible for the development of MA and TH under conditions of tissue acidosis and increased ATP.
-
Chronic stress and alterations in the serotonergic system are key predisposing factors to the development of major depression. Tryptophan hydroxylase (TPH) is the key enzyme in the biosynthesis of serotonin (5-HT). The effects of chronic stress on TPH activity remain uncertain. ⋯ On the other hand, TPH activity was significantly decreased in the brainstem and cortical regions of C57BL/6J mice following both acute and chronic stress. Conversely, no significant stress-induced change in BALB/c TPH activity was observed. Together these data highlight the differential serotonergic response of BALB/c and C57BL/6J mice to acute and chronic restraint stress and may offer insight into the observed differences in their stress-related phenotypes.
-
Previously we demonstrated that phosphorylation of NR2B subunits of the N-methyl-D-aspartate (NMDA) glutamate receptor at Tyr1472 is increased in a neuropathic-pain model and that this phosphorylation is required for the maintenance of neuropathic pain by L5-spinal nerve transection. We obtained these results by using a selective NR2B antagonist and mice deficient in Fyn, which is an Src-family tyrosine protein kinase. However, how Tyr1472 phosphorylation of NR2B is involved in the maintenance of neuropathic pain was unclear. ⋯ While phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) at its Thr286 and that of the GluR1 subunit of the AMPA receptor at its Ser831 was enhanced in the spinal dorsal horn after spared nerve injury in wild-type mice, such phosphorylation was markedly impaired in Y1472F-KI mice. Inhibition of CaMKII by intrathecal injection of KN93, an inhibitor of CaMKII, reduced mechanical allodynia and phosphorylation of CaMKII at its Thr286 and that of GluR1 at its Ser831 in the spinal cord 7 days after spared nerve injury. These results demonstrate that the phosphorylation of CaMKII and GluR1 occurs downstream of the Tyr1472 phosphorylation of NR2B subunits in the spinal cord and give the first suggestion that activation of CaMKII and GluR1-AMPA receptors may be involved in mechanical allodynia caused by peripheral nerve injury.
-
Comparative Study
The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects.
Although Δ(9)-tetrahydrocannabinol (THC) and other mixed CB(1)/CB(2) receptor agonists are well established to elicit antinociceptive effects, their psychomimetic actions and potential for abuse have dampened enthusiasm for their therapeutic development. Conversely, CB(2) receptor-selective agonists have been shown to reduce pain and inflammation, without eliciting apparent cannabinoid behavioral effects. In the present study, we developed a novel ethyl sulfonamide THC analog, O-3223, and compared its pharmacological effects to those of the potent, mixed CB(1)/CB(2) receptor agonist, CP55,940, in a battery of preclinical pain models. ⋯ Unlike CP55,940, O-3223 did not elicit acute antinociceptive effects in the hot-plate test, hypothermia, or motor disturbances, as assessed in the rotarod test. These data indicate that the CB(2) receptor-selective agonist, O-3223, reduces inflammatory and neuropathic nociception, without affecting basal nociception or eliciting overt behavioral effects. Moreover, this compound can serve as a template to develop new CB(2) receptor agonists with increased receptor selectivity and increased potency in treating inflammatory and neuropathic pain.