Neuropharmacology
-
General anesthetics, once thought to exert their effects through non-specific membrane effects, have highly specific ion channel targets that can silence neuronal populations in the nervous system, thereby causing unconsciousness and immobility, characteristic of general anesthesia. Inhibitory GABA(A) receptors (GABA(A)Rs), particularly highly GABA-sensitive extrasynaptic receptor subtypes that give rise to sustained inhibitory currents, are uniquely sensitive to GABA(A)R-active anesthetics. A prominent population of extrasynaptic GABA(A)Rs is made up of alpha4, beta2 or beta3, and delta subunits. ⋯ Furthermore, we show that receptors formed by alpha4beta3 subunits alone also show high GABA sensitivity and that saturating GABA responses of alpha4beta3 receptors are increased to the same extent by etomidate, propofol, and THDOC as are alpha4beta3delta receptors. Therefore, both alpha4beta3 and alpha4beta3delta receptors show low GABA efficacy, and GABA is also a partial agonist on certain binary alphabeta receptor subtypes. Increasing GABA efficacy on alpha4/6beta3delta and alpha4beta3 receptors is likely to make an important contribution to the anesthetic effects of etomidate, propofol and the neurosteroid THDOC.
-
Drug addiction can be defined by a compulsion to seek and take drug, loss of control in limiting intake, and the emergence of a negative emotional state when access to the drug is prevented. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. ⋯ A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of addiction. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least in part, the compulsivity of addiction.
-
It is well recognized that drugs of abuse lead to plastic changes in synapses and that these long-term modifications have the potential to underlie adaptive changes of the brain that lead to substance abuse. However the variety of molecular mechanisms involved in these responses are not completely defined. We are just beginning to understand some of the roles of glial cells that are associated with synapses. ⋯ Studies using Drosophila show important roles of fly glia in mediating responses to cocaine pointing to the potential for the involvement of mammalian glia in the brain's responses to this as well as other drugs. In agreement with this possibility three receptor systems known to be important in substance abuse, mGluR5, GABA(B) and CB-1 receptors, are all expressed by astrocytes and the activation of these glial receptors is now known to impact neuronal excitability and synaptic transmission. Given our new knowledge about the presence of reciprocal signaling between astrocytes and synapses we are now at a time when it becomes appropriate to determine how glial cells respond to drugs of abuse and whether they contribute to the changes in brain function underlying substance abuse.
-
This study addresses whether the potentiation site for neurosteroids on GABA(A) receptors is conserved amongst different GABA(A) receptor isoforms. The neurosteroid potentiation site was previously identified in the alpha1beta2gamma2S receptor by mutation of Q241 to methionine or leucine, which reduced the potentiation of GABA currents by the naturally occurring neurosteroids, allopregnanolone or tetrahydrodeoxycorticosterone (THDOC). ⋯ Studying wild-type and mutant receptors composed of alpha4beta3delta subunits revealed that the delta subunit is unlikely to contribute to the neurosteroid potentiation binding site and probably affects the efficacy of potentiation. Thus, in keeping with the ability of neurosteroids to potentiate GABA currents via a broad variety of GABA(A) receptor isoforms in neurons, the potentiation site is structurally highly conserved on this important neurotransmitter receptor family.
-
Several lines of evidence suggest that the nicotinic acetylcholine receptor alpha7 (nAChR alpha7) is involved in central nervous system disorders like schizophrenia and Alzheimer's disease as well as in inflammatory disorders like sepsis and pancreatitis. The present article describes the in vivo effects of JN403, a compound recently characterized to be a potent and selective partial nAChR alpha7 agonist. JN403 rapidly penetrates into the brain after i.v. and after p.o. administration in mice and rats. ⋯ In the two models of permanent pain tested, JN403 produces a significant reversal of mechanical hyperalgesia. The onset was fast and the duration lasted for about 6h. Altogether, the present set of data suggests that nAChR alpha7 agonists, like JN403 may be beneficial for improving learning/memory performance, restoring sensory gating deficits, and alleviating pain, epileptic seizures and conditions of anxiety.