Neuropharmacology
-
Group I metabotropic glutamate receptors (mGluRs) contribute to spinal sensitization and synaptic plasticity but the underlying mechanisms are unknown. Here, group I mGluR modulation of evoked monosynaptic excitatory postsynaptic currents (EPSCs) in substantia gelatinosa (SG) neurones in vitro was investigated in juvenile rats. In addition, the role of group I mGluRs in dorsal horn neuronal Fos expression was determined in tetrodotoxin (TTX)-treated in vitro spinal cords of naïve rats and those with Complete Freund's Adjuvant (CFA) peripheral inflammation. ⋯ In the CFA group, basal Fos expression was reduced by MPEP and the kinase inhibitors. These data infer a role for mGluR(5) in acute modulation of nociceptive synaptic efficacy within the dorsal horn and postsynaptic activation of transcription factors such as Fos that are implicated in activity-dependent neuroplastic adaptation. These actions are achieved by differential activation of PKC- and ERK-dependent transduction pathways.
-
The kinin system can contribute distinctly to the sensory changes associated with different models of nerve injury-induced neuropathic pain. This study examines the roles of kinin B(1) and B(2) receptor-operated mechanisms in alterations in nociceptive responses of rats submitted to unilateral L5/L6 spinal nerve ligation (SNL) injury. Behavioural responses to ipsilateral hind paw stimulation with acetone (evaporation-evoked cooling), radiant heat (Hargreaves method) or von Frey hairs revealed that SNL rats developed long-lasting cold allodynia (from Days 3 to 40 post-surgery, peak on Day 6), heat hyperalgesia (stable peak from Days 9 to 36) and tactile allodynia (stable peak from Days 3 to 51). ⋯ Systemic treatment of SNL rats with des-Arg(9)-Leu(8)-BK or HOE 140 (peptidic B(1) and B(2) receptor antagonists, respectively; 0.1-1mumol/kg, i.p.) selectively blocked responses triggered by DABK and BK (1nmol/paw) and alleviated partially and transiently established cold allodynia, heat hyperalgesia and (to a lesser extent) tactile allodynia. Western blot analysis revealed enhanced expression of kinin B(1) and B(2) receptor protein in ipsilateral L4-L6 spinal nerve and hind paw skin samples collected on Day 12 after SNL surgery. These results indicate that peripheral pronociceptive kinin B(1) and B(2) receptor-operated mechanisms contribute significantly to the maintenance of hind paw cold and mechanical allodynia and heat hyperalgesia induced by L5/L6 SNL in rats.
-
Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge. At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminal nerve (ION). ⋯ The effect of WIN 55,212-2 was mimicked by cannabinoid CB1 receptor agonist HU 210 and was antagonized by CB1 receptor antagonist AM 251, but not by CB2 receptor antagonist AM 630 or vanilloid receptor 1 antagonist capsazepine, suggesting the involvement of CB1 receptors. CCI-ION also induced a time-dependent upregulation of CB1 receptors primarily within the ipsilateral superficial laminae of the trigeminal caudal nucleus revealed by both Western blot and immunohistochemistry. Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.
-
SKF83959, a recently identified selective agonist of putative phosphoinositide-linked (PI-linked) D(1) dopamine (DA) receptor, is found to elicit excellent anti-parkinsonism effects in monkeys and rodents. In the present study, the effects of SKF83959 on L-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) were assessed in a unilateral 6-hydroxydopamine (6-OHDA) lesioned rat model of Parkinson's disease (PD). The results indicated that chronic L-DOPA (6 mg/kg) induced a progressive dyskinesia-like behavior in PD rats, whereas SKF83959 (0.5 mg/kg) elicited significantly less severe dyskinesia while exerts its anti-parkinsonian action effectively. ⋯ Immediate early gene FosB is previously reported to positively associate with dyskinesia. However, we found that the anti-dyskinesia effect of chronic SKF83959 was independent of FosB since SKF83959 produced stronger FosB expression in the lesioned striatum than that of L-DOPA while exerting its anti-dyskinesia action. The present data demonstrated that SKF83959 reduces LID by attenuating the development of dyskinesia; the underlying signaling pathway for the anti-dyskinesia action of SKF83959 appears not to depend on FosB.
-
Dopaminergic D1/D5-receptor-mediated processes are important for certain forms of memory and its cellular model, i.e. hippocampal long-term potentiation (LTP) in CA1. D1/D5-receptor function is required for the induction of the protein synthesis-dependent maintenance of CA1-LTP (late-LTP) by activating the cAMP/PKA-pathway. In earlier studies we had reported a synergistic interaction of D1/D5-receptor function and N-methyl-D-aspartate (NMDA)-receptors (Frey, 2001, Long-lasting hippocampal plasticity: cellular model for memory consolidation? In: Richter, D. (Ed.), Cell Polarity and Subcellular RNA Localization. ⋯ The question arises as to whether D1/D5-LTP also requires glutamatergic stimulation, i.e. NMDA-receptor activation. We provide first evidence that a synergistic role of D1/D5- as well as NMDA-receptor-function is required in mediating processes relevant for the maintenance of this protein synthesis-dependent potentiation.