Neuropharmacology
-
The basolateral amygdala (BLA) is a key structure in a memory-modulatory system that regulates stress and stress hormones (glucocorticoid and noradrenaline) effects on hippocampal functioning. We have shown previously that priming the amygdala differentially affects plasticity in the hippocampal dentate gyrus (DG) and CA1, and mimicked acute stress effect on plasticity in these two subregions. In the present study, we investigated the mechanisms that mobilize the BLA to differentially alter plasticity in DG and CA1. ⋯ In contrast, blockade of glucocorticoid or noradrenergic transmission in BLA, increased baseline synaptic transmission in the DG, but suppressed the enhancing effect of BLA activation on DG LTP. These findings provide further evidence for a differential amygdala control of hippocampal subregions as well as for differential memory processes involving CA1 and DG. They also provide insight into how stress hormones exert their actions on the circuits involved in these processes.
-
The efficacy of antidepressant drugs with serotonergic, noradrenergic, or dual reuptake inhibition was evaluated in reversing carrageenan-induced thermal hyperalgesia and mechanical allodynia in rats. Duloxetine (1-30mg/kg, i.p.), a balanced serotonergic-noradrenergic reuptake inhibitor (SNRI), was equiefficacious and more potent than the SNRI venlafaxine (3-100mg/kg, i.p.) in reversing both thermal hyperalgesia and mechanical allodynia induced by carrageenan. In addition, the selective noradrenergic reuptake inhibitors (NRIs) thionisoxetine (0.03-10mg/kg, i.p.) and desipramine (1-30mg/kg, i.p.) also produced complete reversals of carrageenan-induced thermal hyperalgesia. ⋯ In the presence of fluoxetine, the potency of thionisoxetine in reversing carrageenan-induced hyperalgesia and allodynia was significantly increased by approximately 100-fold and brain concentrations of thionisoxetine were increased by 1.1- to 5-fold. The present data indicate fluoxetine pharmacodynamically potentiated the analgesic effects of thionisoxetine over and above a metabolic interaction between these two drugs. The present findings thus indicate that, in the carrageenan model, dual serotonergic-noradrenergic reuptake inhibition by dual SNRIs, or SSRI-NRI combinations, produces synergistic analgesic efficacy.
-
CFM-2 [1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one] and THIQ-10c [N-acetyl-1-(4-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline], are two non-competitive 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid (AMPA) receptor antagonists, which demonstrated to antagonize generalized tonic-clonic seizures in different animal models. We have evaluated the effects of such compounds in a genetic animal model of absence epilepsy, the WAG/Rij rat. ⋯ Whereas, both compounds were able to reduce the number and duration of SWDs dose-dependently when microinjected into the peri-oral region of the primary somatosensory cortex (S1po). These findings suggest that AMPA receptor antagonists might play a role in absence epilepsies and that it might depend on the involvement of specific neuronal areas.
-
Comparative Study
Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats.
Epileptogenesis, i.e. the process leading to epilepsy with spontaneous recurrent seizures, can be initiated by a number of brain damaging insults, including traumatic brain injury, status epilepticus (SE), and stroke. Such acquired epilepsy is often associated with memory impairment and behavioral problems. There has been a growing interest in the use of antiepileptic drugs (AEDs) for neuroprotection and prevention or modification of epileptogenesis induced by such brain insults. ⋯ However, treatment with VPA after SE prevented the hyperexcitability and locomotor hyperactivity observed in vehicle-treated epileptic rats. Furthermore, VPA completely counteracted the neuronal damage in the hippocampal formation, including the dentate hilus. The data demonstrate that, although VPA does not prevent the occurrence of spontaneous seizures after SE, it exerts powerful neuroprotective effects and prevents part of the behavioral alterations, demonstrating that administration of VPA immediately after SE exerts a favorable effect on long-term functional outcome.
-
Comparative Study
Chronic DHEAS administration facilitates hippocampal long-term potentiation via an amplification of Src-dependent NMDA receptor signaling.
Dehydroepiandrosterone sulfate (DHEAS) has well characterized effects on memory and cognitive performances. Recently we have reported that repetitive administration of DHEAS lowers the threshold pulse number in inducing activity-dependent long-term potentiation (LTP) in rat hippocampal Schaffer collateral-CA1 synapses, in which a sub-threshold high frequency stimulation (HFS, 30 pulses at 100 Hz) for normal rats could induce robust LTP in DHEAS-treated rats (Chen et al., 2006). Here we report that the sub-threshold HFS could trigger the phosphorylation of Src and ERK2 in the DHEAS-treated rats, but not in control rats. ⋯ These findings suggest that the chronic administration of DHEAS brings the NMDA receptor (NMDAr) to a potentiated state that causes an enough level of [Ca2+]i increase for LTP induction even by the sub-threshold HFS. The potentiated [Ca2+]i transient by the sub-threshold HFS may trigger the Src phosphorylation that will further potentiate NMDAr followed by an activation of ERK2 and LTP induction. This novel postsynaptic NMDAr/Src-mediated signal amplification through "NMDAr-Ca2+-->Src-->NMDAr-Ca2+" cycle may play a pivotal role in the DHEAS-facilitated LTP induction.