BioMed research international
-
The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. ⋯ In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further.
-
We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. ⋯ Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.
-
Flavonol (-)-epicatechin and its derived dimer procyanidin B2, present in high amounts in cocoa products, have been shown to exert beneficial effects on the heart and cardiovascular system; however, their mechanism of action has not been fully elucidated. We studied effects of (-)-epicatechin and procyanidin B2 on the oxidative phosphorylation of isolated rat heart mitochondria. (-)-Epicatechin and procyanidin B2 had stimulating effect (up to 30% compared to control) on substrate-driven (State 2) mitochondrial respiration. ⋯ Procyanidin B2 (0.7-17.9 ng/mL) inhibited State 3 respiration rate up to 19%, the most profound effect being expressed with succinate as the substrate. (-)-Epicatechin at concentrations of 0.23 µg/mL and 0.46 µg/mL prevented loss of the cytochrome c from mitochondria when substrate was succinate, supporting the evidence of membrane stabilizing properties of this flavonol. Thus, both (-)-epicatechin and procyanidin B2 directly influenced mitochondrial functions and the observed effects could help to explain cardiometabolic risk reduction ascribed to the consumption of modest amounts of cocoa products.