The Mount Sinai journal of medicine, New York
-
Xenotransplantation is the attempt to use living biological material from nonhuman animal species in humans for therapeutic purposes. Clinical trials and preclinical studies have suggested that living cells and tissue from other species have the potential to be used in humans to ameliorate disease. However, the potential for successful xenotransplantation to cure human disease is coupled with the risk that therapeutic use of living nonhuman cells in humans may also serve to introduce xenogeneic infections of unpredictable significance. ⋯ However, endogenous retroviruses are present in the genomes of all mammalian cells, have an inadequately defined ability to infect human cells, and have generated public health concern. The history of xenotransplantation, the implications for public health, the global consensus on public safeguards necessary to accompany clinical trials, and the future direction of xenotransplantation are discussed in the context of public health. Mt Sinai J Med 76:435-441, 2009. (c) 2009 Mount Sinai School of Medicine.
-
Zooanthroponotic pathogens, which are transmitted from humans to nonhuman animals, are an understudied aspect of global health, despite their potential to cause significant disease burden in wild and domestic animal populations and affect global economies. Some key human-borne pathogens that have been shown to infect animals and cause morbidity and mortality include measles virus (paramyxoviruses), influenza A virus (orthomyxoviruses), herpes simplex 1 virus (herpesviruses), protozoal and helminthic parasites, and bacteria such as methicillin-resistant Staphylococcus aureus and Mycobacterium tuberculosis. However, zooanthroponotic pathogens are most commonly reported in captive animals or domestic livestock with close human contact; there, the potential for economic loss and human reinfection is most apparent. ⋯ Many of the anthropogenic drivers of zoonotic disease emergence also facilitate zooanthroponotic transmission. Increasing research to better understand the occurrence of and the potential for bidirectional pathogen transmission between humans and animals is essential for improving global health. Mt Sinai J Med 76:448-455, 2009. (c) 2009 Mount Sinai School of Medicine.
-
Review
Direct observation in medical education: a review of the literature and evidence for validity.
In 2000, the Accreditation Council for Medical Education introduced a new initiative that substantively changed the method by which residency programs are evaluated. In this new competency-based approach to residency education, assessment of performance became a main area of interest, and direct observation was offered as a tool to assess knowledge and skills. Despite being an inherent part of medical education as faculty and learners work together in clinical experiences, direct observation has traditionally been an informal and underused assessment method across all specialties. ⋯ Assessing learners in natural settings offers the opportunity to see beyond what they know and into what they actually do, which is fundamentally essential to training qualified physicians. Although the literature identifies several threats to its validity as an assessment, it also demonstrates methods to minimize those threats. Based on the current recommendations and need for performance assessment in education and with attention paid to the development and design, direct observation can and should be included in medical education curricula.
-
Medical schools and residencies are currently facing a shift in their teaching paradigm. The increasing amount of medical information and research makes it difficult for medical education to stay current in its curriculum. As patients become increasingly concerned that students and residents are "practicing" on them, clinical medicine is becoming focused more on patient safety and quality than on bedside teaching and education. ⋯ Only a few studies have shown direct improvements in clinical outcomes from the use of simulation for training. Multiple studies have demonstrated the effectiveness of simulation in the teaching of basic science and clinical knowledge, procedural skills, teamwork, and communication as well as assessment at the undergraduate and graduate medical education levels. As simulation becomes increasingly prevalent in medical school and resident education, more studies are needed to see if simulation training improves patient outcomes.