European journal of pharmacology
-
Several studies have shown that psychostimulants can induce differential immediate early gene and neuropeptide expression in the patch versus matrix compartments of dorsal striatum. The patch compartment contains a high density of mu opioid receptors and activation of these receptors may contribute to psychostimulant-induced gene expression in the patch versus matrix compartments of dorsal striatum. However, the contribution of mu opioid receptor activation to psychostimulant-induced changes in gene expression in the patch compartment of dorsal striatum has not been examined. ⋯ Mu opioid receptor antagonism blocked psychostimulant-induced preprodynorphin messenger RNA expression only in the rostral patch compartment, whereas psychostimulant-induced zif/268 messenger RNA expression in the patch and matrix compartments was attenuated throughout the dorsal striatum. Clocinnamox pretreatment had no effect on stimulant-induced increases in c-fos expression. These data suggest that mu opioid receptor activation plays a specific role in psychostimulant-induced preprodynorphin messenger RNA expression in the rostral patch compartment and zif/268 messenger RNA expression throughout dorsal striatum.
-
([3H]5-HT)-uptake and patch-clamp techniques were used to study the actions of (+) and (-) tramadol and the active metabolites of tramadol, (+) and (-) O-demethyl-tramadol on the human serotonin (5-HT) transporter and the human 5-HT3A receptor, stably expressed in HEK-293 cells. The (+) and (-) enantiomers of tramadol suppressed the human 5-HT transporter concentration-dependently (IC50=1.0 and 0.8 microM, respectively), resulting in 97% and 87% transport inhibition at their respective initial plasma concentrations (9.5 microM). The (+) and (-) enantiomers of the active tramadol metabolite were less potent than tramadol in inhibiting the human 5-HT transporter (IC50=15 and 44 microM, respectively), resulting in 19.2% and 4.8% transport inhibition at their highest plasma concentrations (2.5 microM). ⋯ A similar low potent inhibition of human 5-HT(3A) receptors was found for (+) and (-) O-demethyl-tramadol (IC50=158 and 63 microM, respectively). In conclusion, at clinical plasma concentrations tramadol potently suppresses the human 5-HT transporter, whereas it has only a slight effect on the human 5-HT3A receptor. The results are compatible with a possible mechanism for tramadol-induced early emesis involving the serotonergic system.
-
Comparative Study
dextro- and levo-morphine attenuate opioid delta and kappa receptor agonist produced analgesia in mu-opioid receptor knockout mice.
We have demonstrated that the antianalgesia induced by dextro-morphine and levo-morphine is not mediated by the stimulation of mu-opioid receptors in male CD-1 mice. We now report that the dextro-morphine and levo-morphine attenuated antinociception produced by delta-opioid receptor agonist deltorphin II and kappa-opioid receptor agonist U50,488H given spinally in the male mu-opioid receptor knockout mice. The tail-flick response was used for the antinociceptive test. ⋯ Intrathecal pretreatment with dextro-morphine (33 fmol) or levo-morphine (0.3 nmol) for 45 min also attenuated levo-morphine-produced antinociception in wide type mice. Intrathecal pretreatment with dextro-morphine (33 fmol) or levo-morphine (0.3 nmol) for 45 min attenuated the tail-flick inhibition produced by deltorphin II (12.8 nmol) and U50,488H (123.3 nmol) in wide type, heterozygous and homozygous mu-opioid receptor knockout mice. The findings provide additional evidence that mu-opioid receptors are not involved in the antianalgesia induced by dextro-morphine and levo-morphine.
-
Brief coronary artery occlusion can protect the heart against damage during subsequent prolonged coronary artery occlusion; ischemic preconditioning. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning is investigated in isolated perfused rat hearts, by measuring CGRP release during ischemic preconditioning and mimicking this by exogenous CGRP infusion, either in the absence or presence of the CGRP antagonist BIBN4096BS. CGRP increased left ventricular pressure and coronary flow in a concentration dependent manner, which was effectively antagonized by BIBN4096BS. ⋯ Exogenous CGRP induced preconditioning-like cardioprotection. BIBN completely abolished the cardioprotection induced by preconditioning as well as by exogenous CGRP. In conclusion, since cardioprotection of preconditioning-induced CGRP release can be mimicked by exogenous CGRP, and both can be blocked by a CGRP antagonist, results indicate an important role for CGRP in ischemic preconditioning.
-
Previous studies have demonstrated that Fos-like immunoreactivity is increased in spinal dorsal horn neurons in several pain models, and have suggested that Fos-like immunoreactivity could be used as a marker of neurons activated by painful stimulation. In the present study, we evaluated nociceptive behaviors and spinal Fos-like immunoreactivity in a rat skin incision model of post-operative pain. In this model, evoked and non-evoked pain behaviors were observed at least for 2 days after paw surgery, an increased number of Fos-like immunoreactive neurons was observed in the spinal dorsal horn at lumbar levels 4-5 two-hour post-surgery. ⋯ In both groups, an increase in spinal Fos-like immunoreactive neurons was observed with increasing temperatures, with similar laminar distribution. Finally, systemic morphine reduced post-operative pain and Fos-like immunoreactivity in a naloxone reversible manner, with greater potency and efficacy on behavioral endpoints than on Fos-like immunoreactivity. These results demonstrate a different profile of nociceptive behaviors and spinal Fos-like immunoreactivity in the rat skin incision model, suggesting a limited potential of spinal Fos-like immunoreactivity to study post-surgical pain and its pharmacology.