European journal of pharmacology
-
We hypothesized that Rho-kinase signaling plays a role in mechanical and adhesive mechanisms of neutrophil accumulation in lung. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 prior to cecal ligation and puncture (CLP). Lung levels of myeloperoxidase (MPO) and histological tissue damage were determined 6h and 24h after CLP. ⋯ Adoptive transfer experiments revealed that co-incubation of neutrophils with the anti-Mac-1 antibody or cytochalasin B significantly decreased pulmonary accumulation of neutrophils in septic mice. Our data show that targeting Rho-kinase effectively reduces neutrophil recruitment and tissue damage in abdominal sepsis. Moreover, these findings demonstrate that Rho-kinase-dependent neutrophil accumulation in septic lung injury is regulated by both adhesive and mechanical mechanisms.
-
Spinal glial activation contributes to the development and maintenance of chronic pain states, including neuropathic pain of diverse etiologies. Cannabinoid compounds have shown antinociceptive properties in a variety of neuropathic pain models and are emerging as a promising class of drugs to treat neuropathic pain. Thus, the effects of repeated treatment with WIN 55,212-2, a synthetic cannabinoid agonist, were examined throughout the development of paclitaxel-induced peripheral neuropathy. ⋯ Similar to minocycline, repeated administration of WIN 55,212-2 prevented the development of thermal hyperalgesia and mechanical allodynia in paclitaxel-treated rats. WIN 55,212-2 treatment also prevented spinal microglial and astrocytic activation evoked by paclitaxel at day 29 and attenuated the early production of spinal proinflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α). Our results confirm changes in the reactivity of glial cells during the development of peripheral neuropathy induced by paclitaxel and support a preventive effect of WIN 55,212-2, probably via glial cells reactivity inactivation, on the development of this neuropathy.
-
Recent reports show that the nuclear factor-κB (NF-κB) can control numerous genes encoding inflammatory and nociceptive mediators and play an important role in the development of central pain sensitization. The aim of the present study is to assess the role of NF-κB signal pathway and its downstream pro-inflammatory cytokines in the modulation of neuropathic pain, by using small interfering RNAs (siRNAs) technique, which has been shown to result in potent, long-lasting post-transcriptional silencing of specific genes. ⋯ Taken together, our results suggest that siRNA against NF-κBp65 is a potential strategy for analgesia. Furthermore, the lentiviral vector derived shRNA approach shows a great promise for the management of neuropathic pain and the study of functional NF-κBp65 gene expression.