European journal of pharmacology
-
Three structurally unrelated p38 mitogen-activated protein kinase (MAPK) inhibitors, (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)imidazole (SB203580), 1-5-tert-butyl-2-p-tolyl-2H-pyrazol-3-yl)-3-[4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl] urea (BIRB 796) and 5-(2,6-dichlorophenyl)-2-[2,4-difluorophenyl]thio]-6H-pyrimido[1,6-b]pyridazin-6-one (VX 745) showed approximately 40% inhibition of formyl-Met-Leu-Phe (fMLP)-stimulated neutrophil superoxide anion (O2(•-)) generation at concentrations that greatly diminished p38 MAPK activity. However, a significant inhibition of p47(phox) activation occurred at concentrations much higher than the corresponding IC50 values of these inhibitors in blocking p38 MAPK activity. 4-Ethyl-2(p-methoxyphenyl)-5-(4'-pyridyl)-IH-imidazole (SB202474), an inactive analogue of SB203580, at a concentration (30μM) which significantly attenuated p38 MAPK activity, had no effect on p47(phox) activation, whereas it inhibited O2(•-) generation with an IC50 value of approximately 16μM. ⋯ Both p47(phox) activation and O2(•-) generation were attenuated by a protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide (GF 109203X) in the concentration range that effectively blocked PKC activity. Taken together, these results suggest that the ERK-mediated Ser phosphorylation of p47(phox) is not implicated in the assembly of NADPH oxidase or O2(•-) generation, and that O2(•-) generation is partly attributable to p38 MAPK signaling through mechanisms other than p47(phox) activation, Akt activation and S100A9 membrane recruitment in fMLP-stimulated neutrophils.