European journal of pharmacology
-
Numerous studies have demonstrated that inflammation, oxidative stress and altered level of neurotrophins are involved in the pathogenesis of depressive illness. Mangiferin, a C-glucosylxanthone is abundant in the stem and bark of Mangifera indica L. The compound has been shown to possess antioxidant, anti-inflammatory and immunomodulatory activities. ⋯ Mangiferin pretreatment also attenuated neuroinflammation by reducing the interleukin-1 beta (IL-1β) level in hippocampus and prefrontal cortex. In conclusion, our results demonstrated that mangiferin possessed antidepressant and anti-anxiety properties due to its ability to attenuate IL-1β level and oxidative stress evoked by intraperitoneal administration of lipopolysaccharide. Mangiferin may be a potential therapeutic agent for the treatment of depressive and anxiety illness.
-
The aim of this study was to evaluate the effect of epinephrine as additive for propranolol as an infiltrative anesthetic. Using a rat model of cutaneous trunci muscle reflex (CTMR), we tested the effect of co-administration of epinephrine with propranolol on infiltrative cutaneous analgesia. Bupivacaine, a long-lasting local anesthetic, was used as control. ⋯ Intraperitoneal injection of combined drugs (propranolol or bupivacaine) at ED95 with epinephrine (0.012 μmol/kg) exhibited no cutaneous analgesia. We concluded that propranolol was less potent but produced a similar duration of action when compared to bupivacaine on infiltrative cutaneous analgesia. Epinephrine as adjuvant for propranolol or bupivacaine enhanced the potency and extended the duration of action on infiltrative cutaneous analgesia.
-
Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. ⋯ PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation.
-
The sympathetic nervous system that innervates the peripheral circulation is regulated by several mechanisms/receptors. It has been reported that prejunctional 5-HT1A, 5-HT1B, 5-HT1D, D2-like receptors and α2-adrenoceptors mediate the inhibition of the vasopressor sympathetic outflow in pithed rats. In addition, ergotamine, an antimigraine drug, displays affinity at the above receptors and may explain some of its adverse/therapeutic effects. ⋯ I.v. continuous infusions of ergotamine (1 and 1.8 μg/kgmin) dose-dependently inhibited the vasopressor responses to sympathetic stimulation but not those to exogenous noradrenaline. The sympatho-inhibition elicited by 1.8 μg/kg min ergotamine was (i) unaffected by saline (1 ml/kg); (ii) partially antagonised by WAY 100635 (5-HT1A; 30 μg/kg) and rauwolscine (α2-adrenoceptor; 300 μg/kg), and (iii) dose-dependently blocked by GR 127935 (5-HT1B/1D; 100 and 300 μg/kg) or raclopride (D2-like; 300 and 1000 μg/kg), The above doses of antagonists did not modify per se the sympathetically-induced vasopressor responses. The above results suggest that ergotamine induces inhibition of the vasopressor sympathetic outflow by activation of prejunctional 5-HT1A, 5-HT1B/1D, α2-adrenoceptors and D2-like receptors in pithed rats.
-
The neural mechanism(s) underlying migraine remain poorly defined at present; preclinical and clinical studies show an involvement of CGRP in this disorder. However current evidence pointed out that CGRP does not exert an algogenic action per se, but it is able to mediate migraine pain only if the trigeminal-vascular system is sensitized. The present study was addressed to investigate CGRP-evoked behavior in nitric oxide (NO) sensitized rats, using an experimental model of nitroglycerin induced sensitization of trigeminal system, looking at neuropeptide release from different cerebral areas after the intra-peritoneal (i.p.) administration of NO-donors. ⋯ Furthermore, the i.p. treatment with nitroglycerin produced an increase of CGRP levels in brainstem and trigeminal ganglia, but not in the hypothalamus and hippocampus. The absolute amounts of CGRP produced in the brainstem were lower compared to those in the trigeminal ganglion; however, after nitroglycerin stimulation the percentage increase was higher in the brainstem. In conclusion, findings presented in this study suggest that CGRP induces a painful behavior in rats only after sensitization of trigeminal system; thus supporting the concept that a genetic as well as acquired predisposition to trigemino- vascular activation represents the neurobiological basis of CGRP nociceptive effects in migraineurs.